zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Traveling wave solutions of fourth order PDEs for image processing. (English) Zbl 1082.35080

The paper considers the problem of the existence of traveling shock-wave solutions in two equations combining the Burgers’ nonlinearity and fourth-order nonlinear diffusion. One equation is

u t +uu x =-[(1+u xx 2 ) -1 u xx ] xx ,

and the other is

u t +uu x =-[(1+u xx 2 ) -1 u xxx ] x ·

These equations are used for removal of noise in image processing: while the diffusion suppresses the noise components in the image’s spectrum, the highly nonlinear character of the diffusion provides for conservation of true features of the image rich in higher harmonics, such as sharp corners. In this paper, it is rigorously proven that the first equation does not have shock-wave solutions for large values of the shock-driving jump, while the second equation always supports shock waves. The analysis is based on reduction of the problem to one for the corresponding ODE, and comparison with a result for a simplified equation. The results are visualized by means of plots in the phase plane of the ODE. The results are also compared with direct simulations of the full PDEs, that support the conclusions derived from the ODE analysis.

MSC:
35K55Nonlinear parabolic equations
68U10Image processing (computing aspects)
94A08Image processing (compression, reconstruction, etc.)
35K25Higher order parabolic equations, general
74J30Nonlinear waves (solid mechanics)