zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the representation of fractional Brownian motion as an integral with respect to (dt) a . (English) Zbl 1082.60029
Summary: Maruyama introduced the notation db(t)=w(t)(dt) 1/2 where w(t) is a zero-mean Gaussian white noise, in order to represent the Brownian motion b(t). Here, we examine in which way this notation can be extended to Brownian motion of fractional order a (different from 1/2) defined as the Riemann-Liouville derivative of the Gaussian white noise. The rationale is mainly based upon the Taylor’s series of fractional order, and two cases have to be considered: processes with short-range dependence, that is to say with 0a1/2, and processes with long-range dependence, with 1/2a1.

60G15Gaussian processes