zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On generalized successive overrelaxation methods for augmented linear systems. (English) Zbl 1083.65034
The authors present a generalized successive overrelaxation iterative algorithm for the augmented linear system corresponding to the Kuhn-Tucker conditions for quadratic programming or saddle point problems. They prove convergence and make a complete theoretical analysis for the optimal iteration parameters.

MSC:
65F10Iterative methods for linear systems
65F50Sparse matrices (numerical linear algebra)
References:
[1]Arrow, K., Hurwicz, L., Uzawa, H.: Studies in Nonlinear Programming. Stanford University Press, Stanford, 1958
[2]Axelsson, O.: Iterative Solution Methods. Cambridge University Press, Cambridge, 1994
[3]Bai, Z.-Z.: Parallel Iterative Methods for Large-Scale Systems of Algebraic Equations, Ph.D. Thesis, Department of Mathematics, Shanghai University of Science and Technology, Shanghai, March, 1993
[4]Bai, Z.-Z.: On the convergence of the generalized matrix multisplitting relaxed methods. Comm. Numer. Methods Engrg. 11, 363–371 (1995) · Zbl 0823.65027 · doi:10.1002/cnm.1640110410
[5]Bai, Z.-Z.: A class of modified block SSOR preconditioners for symmetric positive definite systems of linear equations. Adv. Comput. Math. 10, 169–186 (1999) · Zbl 0922.65033 · doi:10.1023/A:1018974514896
[6]Bai, Z.-Z.: Modified block SSOR preconditioners for symmetric positive definite linear systems. Ann. Oper. Res. 103, 263–282 (2001) · Zbl 1028.65018 · doi:10.1023/A:1012915424955
[7]Bai, Z.-Z., Golub, G.H., Pan, J.-Y.: Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems. Numer. Math. 98, 1–32 (2004) · Zbl 1056.65025 · doi:10.1007/s00211-004-0521-1
[8]Bai, Z.-Z., Li, G.-Q.: Restrictively preconditioned conjugate gradient methods for systems of linear equations. IMA J. Numer. Anal. 23, 561–580 (2003) · Zbl 1046.65018 · doi:10.1093/imanum/23.4.561
[9]Bai, Z.-Z., Wang, D.-R.: Generalized matrix multisplitting relaxation methods and their convergence. Numer. Math. J. Chinese Univ. (English Ser.) 2, 87–100 (1993)
[10]Bramble, J.H., Pasciak, J.E., Vassilev, A.T.: Analysis of the inexact Uzawa algorithm for saddle point problems. SIAM J. Numer. Anal. 34, 1072–1092 (1997) · Zbl 0873.65031 · doi:10.1137/S0036142994273343
[11]Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York and London, 1991
[12]Chan, R.H., Ng, M.K.: Conjugate gradient methods for Toeplitz systems. SIAM Rev. 38, 427–482 (1996) · Zbl 0863.65013 · doi:10.1137/S0036144594276474
[13]Elman, H.C., Golub, G.H.: Inexact and preconditioned Uzawa algorithms for saddle point problems. SIAM J. Numer. Anal. 31, 1645–1661 (1994) · Zbl 0815.65041 · doi:10.1137/0731085
[14]Fischer, B., Ramage, R., Silvester, D.J., Wathen, A.J.: Minimum residual methods for augmented systems. BIT 38, 527–543 (1998) · Zbl 0914.65026 · doi:10.1007/BF02510258
[15]Fortin, M., Glowinski, R.: Augmented Lagrangian Methods, Applications to the Numerical Solution of Boundary Value Problems. North-Holland, Amsterdam, 1983
[16]Golub, G.H., Van Loan, C.F.: Matrix Computations. 3rd Edition, The Johns Hopkins University Press, Baltimore and London, 1996
[17]Golub, G.H., Wu, X., Yuan, J.-Y.: SOR-like methods for augmented systems. BIT 41, 71–85 (2001) · Zbl 0991.65036 · doi:10.1023/A:1021965717530
[18]Henrici, P.: Applied and Computational Complex Analysis. Vol. 1: Power Series, Integration, Conformal Mapping and Location of Zeros, John Wiley & Sons, New York, London and Sydney, 1974
[19]Hestenes, M.R., Stiefel, E.L.: Methods of conjugate gradients for solving linear systems. J. Res. Nat. Bureau Standards Section B 49, 409–436 (1952)
[20]Hu, J.-G.: Convergence of a generalized iterative matrix. Math. Numer. Sinica 6, 174–181 (1984) (In Chinese)
[21]Li, C.-J., Li, B.-J., Evans, D.J.: A generalized successive overrelaxation method for least squares problems. BIT 38, 347–356 (1998) · Zbl 0907.65043 · doi:10.1007/BF02512371
[22]Li, C.-J., Li, Z., Evans, D.J., Zhang, T.: A note on an SOR-like method for augmented systems. IMA J. Numer. Anal. 23, 581–592 (2003) · Zbl 1053.65020 · doi:10.1093/imanum/23.4.581
[23]Miller, J.J.H.: On the location of zeros of certain classes of polynomials with applications to numerical analysis. J. Inst. Math. Appl. 8, 397–406 (1971) · Zbl 0232.65070 · doi:10.1093/imamat/8.3.397
[24]Ng, M.K.: Preconditioning of elliptic problems by approximation in the transform domain. BIT 37, 885–900 (1997) · Zbl 0890.65042 · doi:10.1007/BF02510358
[25]Song, Y.-Z.: On the convergence of the generalized AOR method. Linear Algebra Appl. 256, 199–218 (1997) · Zbl 0872.65028 · doi:10.1016/S0024-3795(96)00028-6
[26]Song, Y.-Z.: On the convergence of the MAOR method. J. Comput. Appl. Math. 79, 299–317 (1997) · Zbl 0882.65017 · doi:10.1016/S0377-0427(97)00008-3
[27]Varga, R.S.: Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs, N.J., 1962
[28]Wang, X.-M.: Generalized extrapolation principle and convergence of some generalized iterative methods. Linear Algebra Appl. 185, 235–272 (1993) · Zbl 0770.65019 · doi:10.1016/0024-3795(93)90215-A
[29]Wang, X.-M.: Convergence for a general form of the GAOR method and its application to the MSOR method. Linear Algebra Appl. 196, 105–123 (1994) · Zbl 0797.65028 · doi:10.1016/0024-3795(94)90318-2
[30]Young, D.M.: Iterative Solutions of Large Linear Systems. Academic Press, New York, 1971