zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Dynamics of systems on infinite lattices. (English) Zbl 1085.37056
Summary: The dynamics of infinite-dimensional lattice systems is studied. A necessary and sufficient condition for asymptotic compactness of lattice dynamical systems is introduced. It is shown that a lattice system has a global attractor if and only if it has a bounded absorbing set and is asymptotically null. As an application, it is proved that the lattice reaction-diffusion equation has a global attractor in a weighted l 2 space, which is compact as well as contains traveling waves. The upper semicontinuity of global attractors is also obtained when the lattice reaction-diffusion equation is approached by finite-dimensional systems.
37L60Lattice dynamics (infinite-dimensional dissipative systems)
37C70Attractors and repellers, topological structure
35B41Attractors (PDE)
37L30Attractors and their dimensions, Lyapunov exponents