zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The fundamental solution of the space-time fractional advection-dispersion equation. (English) Zbl 1086.35003
Summary: A space-time fractional advection-dispersion equation (ADE) is a generalization of the classical ADE in which the first-order time derivative is replaced with Caputo derivative of order α(0,1], and the second-order space derivative is replaced with a Riesz-Feller derivative of order β(0,2]. We derive the solution of its Cauchy problem in terms of the Green functions and the representations of the Green function by applying its Fourier-Laplace transforms. The Green function also can be interpreted as a spatial probability density function (pdf) evolving in time. We do the same on another kind of space-time fractional advection-dispersion equation whose space and time derivatives both replacing with Caputo derivatives.
35A08Fundamental solutions of PDE
35K57Reaction-diffusion equations
26A33Fractional derivatives and integrals (real functions)
49K20Optimal control problems with PDE (optimality conditions)
44A10Laplace transform
[1]V.V. Anh and N.N. Leonenka,Spectral analysis of fractional kinetic equations with random data, J. Stat. Physics,104, N5/6 (2001), 1349–1387. · Zbl 1034.82044 · doi:10.1023/A:1010474332598
[2]V.V. Anh and N.N. Leonenko,Renormalization and homogenization of fractional diffusion equations with random data, Probab. Theory Rel. Fields,124 (2002), 381–408. · Zbl 1031.60043 · doi:10.1007/s004400200217
[3]V.V. Anh and N.N. Leonenko,Harmmonic analysis of fractional diffusion-wave equations, Applied Math. Comput.,48(3) (2003), 239–252.
[4]M. BAsu and D.P. Acharya,On quadratic fractional generalized solid bi-criterion, J. Appl. Math. and Computing(old:KJCAM)2(2002), 131–144. · Zbl 1007.90038 · doi:10.1007/BF02936212
[5]D.A. Benson,The fractional advection dispersion equation: Development and application, Ph.D. thesis, Univ. of Nev. Reno, 1998.
[6]D.A. Benson, S.W. Wheatcraft and M.M. Meerschaert,Application of a fractional advection-dispersion equation, Water Resources Research,36(6) (2000), 1403–1412. · doi:10.1029/2000WR900031
[7]M. Caputo,Linear model of dissipation whose Q is almost frequency indepent-H, Geophys. J. R. Astr. Soc.,13 (1967), 529–539.
[8]M.M. Djrbashian,Integral transforms and representations of functions in the complex plane, Nauka, 1966 (in russian).
[9]A.M.A. El-Sayed and M.A.E. Aly,Continuation theorem of fractionalorder evolutionary integral equations, J. Appl. Math. and Computing (old:KJCAM)2(2002), 525–534.
[10]A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi,Higer transcendental functions,3, New York, McGraw-Hill, (1953-1954).
[11]Y. Fujita,Integro differential equation which interpolates the heat equation and the wave equation, Osaka, J. Math.27 (2004), 309–321.
[12]A.A. Kilbas, T. Pierantozzi, J. Trujillo,On the solution of fractional evolution equations, J. Phys. A: Math. Gen.37 (2004), 3271–3283. · Zbl 1059.35030 · doi:10.1088/0305-4470/37/9/015
[13]F. Liu, I. Turner and V. Anh,An unstructured mesh finite volume method for modelling saltwater intrusion into coatal aquifer, J. Appl. Math. and Computing (old:KJCAM)9 (2002), 391–407.
[14]F. Liu, L.W. Turner, V. Anh and N. Su,A two-dimensional finite volume method for transient simulation of time-, scale-and density-dependent transport in heterogeneous aquifer systems, J. Appl. Math. and Computing11 (2003a), 215–241. · Zbl 1145.76407 · doi:10.1007/BF02935733
[15]F. Liu, I.W. Turner, V. Anh and P. Zhuang,Time fractional advection-dispersion equation, J. Appl. Math. and Computing13(2003b), 233–245. · Zbl 1068.26006 · doi:10.1007/BF02936089
[16]F. Liu, V.V. Anh and I. Turner:Numerical solution of the space fractional Fokker-Plank Equation, J. Comp. Appl. Math.166 2004, 209–319. · Zbl 1036.82019 · doi:10.1016/j.cam.2003.09.028
[17]W. Feller,On a generalization of Marcel Riesz’s potentials and the semigroups generated by them, Meddekanden lunds Universitets Matematiska Seminarium (Comm. Sém. M.athém. Université de Lund), Tome suppl. dédié à M. Riesz, Lund, (1952) 73–81.
[18]R. Gorenflo and F. Mainardi,Approximation of Lévy-Feller diffusion by random walk, ZAA,18 (1999), 231–246.
[19]R. Gorenflo, Yu. Luchko and F. Mainardi,Wright function as scale-invariant solutions of the diffusion-wave equation, J. Comp. Appl. Math.118 (2000), 175–191. · Zbl 0973.35012 · doi:10.1016/S0377-0427(00)00288-0
[20]R. Gorenflo and F. Mainardi,Fractional calculus: integral and differential equations of fractional order, in A. Carpinteri and Mainardi (Editors) Fractals and Fractional Calculus in Continuum Mechanics, Wien and New York, Springer Verlag, (1997), 223–273.
[21]F. Huang and F. Liu,The time fractional diffusion equation and advection-dispersion equation, Submitted to the Australian and New Zealand Industrial and Applied Mathematic Journal (ANZIAM), 2004, in press.
[22]F. Mainardi,Fraction calculus: some basic problems in continuum, and statistical mechanics (A. Carpinteri, F. Mainardi, Eds.),Fractal and Fractional Colin Continuum Mechanics, Springer, Wien (1997), 291–348.
[23]F. Mainardi, Y. Luchko, G. Pagnini,The fundamental solution of the space-time fractional diffusion equation, Fractional Calculus and Applied Analysis,4 (2001), 153–1925.
[24]M.M. Meerschaert, D.A. Benson and B. Bäumer,Multidimensional advection and fractional dispersion, Phys. Rev. E.59(5), (1999), 5026–5028. · doi:10.1103/PhysRevE.59.5026
[25]M.M. Meerschaert and C. Tadjeran,Finite difference approximations for fractional advection-dispersion equations.
[26]I. Podlubny,Fractional differential equations, Academic press, San Diego, 1999.
[27]R. Schunner, D.A. Benson, M.M. Meerschaert, S.W. Wheatcraft,Eulerian derivation of the factional adverction-dispersion equation, Journal of Contaninant Hydrology48 (2001), 69–88. · doi:10.1016/S0169-7722(00)00170-4
[28]A. Saichev and G. Zaslavsky,Fractional kinetic, equations: solutions and applications, Chaos7 (1997), 753–764. · Zbl 0933.37029 · doi:10.1063/1.166272