×

Efficient iterations for Gauss methods on second-order problems. (English) Zbl 1086.65065

J. Comput. Appl. Math. 189, No. 1-2, 80-97 (2006); corrigendum 205, No. 1, 583 (2007).
Summary: We consider some important aspects about the implementation of high order implicit formulas (specially the Gauss methods) for solving second-order differential systems having high frequencies and small amplitudes superimposed. The choice of an appropriate iterative scheme is discussed in detail. Important topics about the predictors (initial guesses) are analyzed and a variable order strategy to select the best predictor at each integration step is supplied. A few numerical experiments on some standard test problems confirm the theory presented.

MSC:

65L05 Numerical methods for initial value problems involving ordinary differential equations
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
34A34 Nonlinear ordinary differential equations and systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Cash, J. R.: High order, P-stable formulae for the numerical integration of periodic initial values problems. Numer. math. 37, 355-370 (1981) · Zbl 0488.65029
[2] Cash, J. R.: Efficient P-stable methods for periodic initial values problems. Bit 24, 248-252 (1984) · Zbl 0558.65053
[3] Chawla, M. M.: Unconditionally stable numerov-type methods for second order differential equations. Bit 23, 541-542 (1983) · Zbl 0523.65055
[4] Chawla, M. M.; Rao, P. S.; Neta, Beny: Two-step fourth order P-stable methods with phase-lag of order six for y″=\(f(t,y)\). J. comput. Appl. math. 16, 233-236 (1986) · Zbl 0596.65047
[5] Cooper, G. J.; Butcher, J. C.: An iteration scheme for implicit Runge – Kutta methods. IMA J. Numer. anal. 3, 127-140 (1983) · Zbl 0525.65052
[6] Franco, J. M.; Gómez, J. M.; Rández, L.: SDIRK methods for odes with oscillating solutions. J. comput. Appl. math. 81, 197-209 (1997) · Zbl 0887.65078
[7] Gladwell, I.; Thomas, R. M.: Efficiency of methods for second-order problems. IMA J. Numer. anal. 10, 181-207 (1990) · Zbl 0702.65067
[8] González-Pinto, S.; Montijano, J. I.; Peréz-Rodríguez, S.: Variable-order starting algorithms for implicit Runge – Kutta methods on stiff problems. Appl. numer. Math. 44, 77-94 (2003) · Zbl 1020.65038
[9] González-Pinto, S.; Montijano, J. I.; Rández, L.: Iterative schemes for three-stage implicit Runge – Kutta methods. Appl. numer. Math. 17, 363-382 (1995) · Zbl 0885.65086
[10] Hairer, E.: Unconditionally stable methods for second order differential equations. Numer. math. 32, 373-379 (1979) · Zbl 0393.65035
[11] Hairer, E.; Lubich, C.; Wanner, G.: Geometric numerical integration. (2002) · Zbl 0994.65135
[12] Hairer, E.; Nørsett, S. P.; Wanner, G.: Solving ordinary differential equations I. (1993) · Zbl 0789.65048
[13] Hairer, E.; Wanner, G.: Solving ordinary differential equations II. (1996) · Zbl 0859.65067
[14] Van Der Houwen, P. J.; Sommeijer, B. P.: Explicit Runge – \(Kutta( -- Nystr\"om)\) methods with reduced phase errors for computing oscillating solutions. SIAM J. Numer. anal. 24, No. 3, 595-617 (1987) · Zbl 0624.65058
[15] Van Der Houwen, P. J.; Sommeijer, B. P.: Diagonally implicit Runge – Kutta – Nyström methods for oscillating problems. SIAM J. Numer. anal. 26, No. 2, 414-429 (1989) · Zbl 0676.65072
[16] Van Der Houwen, P. J.; De Swart, J. J. B.: Triangularly implicit iteration methods for ODE-IVP solvers. SIAM J. Sci. comput. 18, No. 1, 41-55 (1997) · Zbl 0872.65072
[17] Lambert, J. D.; Watson, I. A.: Symmetric multistep methods for periodic initial value problems. J. inst. Math. appl. 18, 189-202 (1976) · Zbl 0359.65060
[18] Nørsett, S. P.: One step Hermite type methods for numerical integration of stiff system. Bit 14, 63-67 (1974) · Zbl 0278.65078
[19] Sharp, P. W.; Fine, J. M.; Burrage, K.: Two stage and three stage diagonally implicit Runge – Kutta Nyström methods of orders three and four. IMA J. Numer. anal. 10, 489-504 (1990) · Zbl 0711.65057
[20] Thomas, R. M.: Phase properties of high order, almost P-stable formulae. Bit 24, 225-238 (1984) · Zbl 0569.65052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.