zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Stability analysis of pathogen-immune interaction dynamics. (English) Zbl 1086.92029

Summary: The paper considers models of dynamics of infectious diseases in vivo from the standpoint of the mathematical analysis of stability. The models describe the interaction of the target cells, the pathogens, and the humoral immune response. The paper mainly focuses on the interior equilibrium, whose components are all positive, If the model ignores the absorption of the pathogens due to infection, the interior equilibrium is always asymptotically stable. On the other hand, if the model does consider it, the interior equilibrium can be unstable and a simple Hopf bifurcation can occur.

A sufficient condition that the interior equilibrium is asymptotically stable is obtained. The condition explains that the interior equilibrium is asymptotically stable when experimental parameter values are used for the model. Moreover, the paper considers the models in which uninfected cells are involved in the immune response to pathogens, and are removed by the immune complexes. The effect of the involvement strongly affects the stability of the interior equilibria. The results are shown with the aid of symbolic calculation software.


MSC:
92C50Medical applications of mathematical biology
92C60Medical epidemiology
34D05Asymptotic stability of ODE
References:
[1]Anderson, R.M., May, R.M., Gupta, S.: Non-linear phenomena in host-parasite interactions. Parasitology 99, S59–S79 (1989)
[2]Deans, J.A., Cohen, S.: Immunology of malaria. Ann. Rev. Microbiol. 37, 25–49 (1983) · doi:10.1146/annurev.mi.37.100183.000325
[3]Edelstein-Keshet, L.: Mathematical models in biology. McGraw-Hill, 1988
[4]Fuchs, B.A., Levin, B.I.: Functions of a complex variable and some of their applications. Volume 2. Pergamon Press, 1961
[5]Gravenor, M.B., McLean, A.R., Kwiatkowski, D.: The regulation of malaria parasitaemia. Parasitology 110, 115–122 (1995) · doi:10.1017/S0031182000063861
[6]Hetzel, C., Anderson, R.M.: The within-host cellular dynamics of bloodstage malaria. Parasitology 113, 25–38 (1996) · doi:10.1017/S0031182000066245
[7]Ho, D.D. et al.: Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373, 123–126 (1995) · doi:10.1038/373123a0
[8]Liu, W.M.: Criterion of Hopf bifurcations without using eigenvalues. J. Math. Anal. Appl. 182, 250–256 (1994) · Zbl 0794.34033 · doi:10.1006/jmaa.1994.1079
[9]Liu, W.:. Nonlinear oscillation in models of immune responses to persistent viruses. Theor. Popul. Biol. 52, 224–230 (1997)
[10]Neumann, A.U. et al.: Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-α therapy. Science 282, 103–107 (1998) · doi:10.1126/science.282.5386.103
[11]Nowak, M.A., Bangham, C.R.M.: Population dynamics of immune responses to persistent viruses. Science 272, 74–79 (1996) · doi:10.1126/science.272.5258.74
[12]Nowak, M.A. et al.: Viral dynamics in hepatitis B virus infection. Proc. Natl. Acad. Sci. 93, 4398–4402 (1996) · doi:10.1073/pnas.93.9.4398
[13]Perelson, A.S. et al.: HIV-1 dynamics in vivo. Science 271, 1582–1586 (1996) · doi:10.1126/science.271.5255.1582
[14]Perelson, A.S., Nelson, P.W.: Mathematical analysis of HIV-1 dynamics in vivo. SIAM Review 41, 3–44 (1999) · Zbl 1078.92502 · doi:10.1137/S0036144598335107
[15]Roitt, I., Brostoff, J., Male, D.: Immunology fifth edition. Mosby-Wolfe, 1998
[16]Saul, A.: Models for the in-host dynamics of malaria revisited : errors in some basic models lead to large over-estimates of growth rates. Parasitology 117, 405–407 (1998) · doi:10.1017/S0031182098003230
[17]Wei, X. et al.: Viral dynamics in human immunodeficiency virus type 1 infection. Nature 373, 117–122 (1995) · doi:10.1038/373117a0