zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A nonsmooth L-M method for solving the generalized nonlinear complementarity problem over a polyhedral cone. (English) Zbl 1087.65064
Author’s summary: The generalized nonlinear complementarity problem (GNCP) defined on a polyhedral cone is reformulated as a system of nonsmooth equations. Based on this reformulation, the famous Levenberg-Marquardt (L-M) algorithm is employed to obtain its solution. Theoretical results that relate the stationary points of the merit function to the solution of the GNCP are presented. Under mild assumptions we show that the L-M algorithm is both globally and superlinearly convergent. Moreover, a method to calculate a generalized Jacobian is given and numerical experimental results are presented.
MSC:
65K05Mathematical programming (numerical methods)
90C33Complementarity and equilibrium problems; variational inequalities (finite dimensions)