zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A new elliptic equation rational expansion method and its application to the shallow long wave approximate equations. (English) Zbl 1088.65087
Summary: A new elliptic equation rational expansion method is presented by a new general ansatz, which is a direct and unified algebraic method for constructing multiple and more general travelling wave solution for nonlinear partial differential equation and implemented in a computer algebraic system. The proposed method is applied to consider the shallow long wave approximate equation and obtains rich new families of the exact solutions, including rational form solitary wave, rational form triangular periodic, rational form Jacobi and Weierstrass doubly periodic solutions.
MSC:
65M70Spectral, collocation and related methods (IVP of PDE)
35Q51Soliton-like equations
68W30Symbolic computation and algebraic computation
Software:
MACSYMA