zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Oscillation criteria for nonlinear perturbed dynamic equations of second-order on time scales. (English) Zbl 1089.39001
This paper deals with the oscillatory behavior of second-order nonlinear perturbed dynamic equations on time scales by means of the well-known Riccati transformation technique. An example which illustrates the importance of the main results is also included.
MSC:
39A11Stability of difference equations (MSC2000)
34K11Oscillation theory of functional-differential equations
39A12Discrete version of topics in analysis
References:
[1]R. P. Agarwal, M. Bohner, D. O’Regan and A. Peterson,Dynamic equations on time scales: A survey, Special Issue on ”Dynamic Equations on Time Scales”, edited by R. P. Agarwal, M. Bohner, and D. O’Regan, (Preprint in Ulmer Seminare 5) J. Comp. Appl. Math.141 (2002), 1–26. · Zbl 1020.39008 · doi:10.1016/S0377-0427(01)00432-0
[2]R. P. Agarwal, M. Bohner and S. H. Saker,Oscillation of second order delay dynamic equations, Canadian Appl. Math. Quart. (accepted).
[3]R. P. Agarwal, D. O’Regan and S. H. Saker,Oscillation criteria for second-order nonlinear neutral delay dynamic equations, J. Math. Anal. Appl.300 (2004), 203–217. · Zbl 1062.34068 · doi:10.1016/j.jmaa.2004.06.041
[4]R. P. Agarwal, D. O’Regan and S. H. Saker,Philos-type oscillation criteria of second-order half-linear dynamic equations on time scales, submitted.
[5]R. P. Agarwal, D. O’Regan and S. H. Saker,Properties of bounded solutions of nonlinear dynamic equations on time scales, submitted.
[6]E. A. Bohner and J. Hoffacker,Oscillation properties of an Emden-Fowler type Equations on Discrete time scales, J. Diff. Eqns. Appl.9 (2003), 603–612. · Zbl 1038.39009 · doi:10.1080/1023619021000053575
[7]M. Bohner and A. Peterson,Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser, Boston, 2001.
[8]M. Bohner, A. Peterson,Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, 2003.
[9]M. Bohner and S. H. Saker,Oscillation of second order nonlinear dynamic equations on time scales, Rocky Mountain J. Math.34 (2004), 1239–1254. · Zbl 1075.34028 · doi:10.1216/rmjm/1181069797
[10]M. Bohner and S. H. Saker,Oscillation criteria for perturbed nonlinear dynamic equations, Math. Comp. Modelling40 (2004), 249–260. · Zbl 1112.34019 · doi:10.1016/j.mcm.2004.03.002
[11]E. A. Bohner, M. Bohner and S. H. Saker,Oscillation criteria for a certain class of second order Emden-Fowler dynamic Equations, Elect. Transc. Numerical. Anal. (accepted).
[12]O. Doslý and S. Hilger,A necessary and sufficient condition for oscillation of the Sturm-Liouville dynamic equation on time scales, Special Issue on ”Dynamic Equations on Time Scales”, edited by R. P. Agarwal, M. Bohner, and D. O’Regan, J. Comp. Appl. Math.141 (2002) 147–158. · Zbl 1009.34033 · doi:10.1016/S0377-0427(01)00442-3
[13]L. Erbe,Oscillation criteria for second order linear equations on a time scale, Canadian Appl. Math. Quart.9 (2001), 1–31.
[14]L. Erbe and A. Peterson,Positive solutions for a nonlinear differential equation on a measure chain, Mathl. Comp. Modelling, Boundary Value Problems and Related Topics32(5-6), (2000), 571–585.
[15]L. Erbe and A. Peterson,Riccati equations on a measure chain, In G. S. Ladde, N. G. Medhin, and M. Sambandham, editors, Proceedings of Dynamic Systems and Applications 3, 193–199, Atlanta, 2001, Dynamic Publishers.
[16]L. Erbe and A. Peterson,Oscillation criteria for second order matrix dynamic equations on a time scale, Special Issue on ”Dynamic Equations on Time Scales”, edited by R. P. Agarwal, M. Bohner, and D. O’Regan, J. Comput. Appl. Math.141 (2002), 169–185. · Zbl 1017.34030 · doi:10.1016/S0377-0427(01)00444-7
[17]L. Erbe and A. Peterson,Boundedness and oscillation for nonlinear dynamic equations on a time scale, Proc. Amer. Math. Soc.132 (2004), 735–744. · Zbl 1055.39007 · doi:10.1090/S0002-9939-03-07061-8
[18]L. Erbe, A. Peterson and S. H. Saker,Oscillation criteria for second-order nonlinear dynamic equations on time scales, J. London Math. Soc.67 (2003), 701–714. · Zbl 1050.34042 · doi:10.1112/S0024610703004228
[19]G. H. Hardy, J. E. Littlewood and G. Polya,Inequalities, 2nd Ed. Cambridge Univ. Press 1952.
[20]S. Hilger,Analysis on measure chains –a unified approach to continuous and discrete calculus, Results Math.18 (1990), 18–56.
[21]S. H. Saker,Oscillation of nonlinear dynamic equations on time scales, Appl. Math. Comp.148 (2004), 81–91. · Zbl 1045.39012 · doi:10.1016/S0096-3003(02)00829-9
[22]S. H. Saker,Oscillation criteria of second-order half-linear dynamic equations on time scales, J. Comp. Appl. Math.177 (2005), 375–387. · Zbl 1082.34032 · doi:10.1016/j.cam.2004.09.028
[23]S. H. Saker,Boundedness of solutions of second-order forced nonlinear dynamic equations, Rocky Mount. J. Math (accepted).