zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the higher-order Stokes phenomenon. (English) Zbl 1090.35054
Summary: During the course of a Stokes phenomenon, an asymptotic expansion can change its form as a further series, prefactored by an exponentially small term and a Stokes multiplier, appears in the representation. The initially exponentially small contribution may nevertheless grow to dominate the behaviour for other values of the asymptotic or associated parameters. In this paper we introduce the concept of a ‘higher-order Stokes phenomenon’, at which a Stokes multiplier itself can change value. We show that the higher-order Stokes phenomenon can be used to explain the apparent sudden birth of Stokes lines at regular points and how it is indispensable to the proper derivation of expansions that involve three or more possible asymptotic contributions. We provide an example of how the higher-order Stokes phenomenon can have important effects on the large-time behaviour of partial differential equations.
MSC:
35C20Asymptotic expansions of solutions of PDE
35C15Integral representations of solutions of PDE