zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Local and global Hopf bifurcation in a delayed hematopoiesis model. (English) Zbl 1090.37547

Summary: We consider the following nonlinear differential equation

dx dt=x(t)q r+x n (t-τ)-p·(1)

We first consider the existence of local Hopf bifurcations, and then derive explicit formulas which determine the stability, direction and other properties of bifurcating periodic solutions, using the normal form theory and center manifold reduction. Further, particular attention is focused on the existence of the global Hopf bifurcation. By using the global Hopf bifurcation theory due to Wu [1998], we show that the local Hopf bifurcation of (1) implies the global Hopf bifurcation after the second critical value of the delay t. Finally, numerical simulation results are given to support the theoretical predictions.

MSC:
37G15Bifurcations of limit cycles and periodic orbits
34K18Bifurcation theory of functional differential equations
37N25Dynamical systems in biology
92C50Medical applications of mathematical biology