zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A generalized Cauchy process and its application to relaxation phenomena. (English) Zbl 1090.82013
The authors introduce a two-parameter family of non-Markovian stationary Gaussian processes whose defining property is that their covariance takes the functional form of the symmetric stable distribution. Processes are not self-similiar. They are unrelated to so-called fractional Brownian motions. Naming these processes to be affine to the Cauchy process or the generalized Cauchy process is a bit misleading since the latter are well known in the mathematical literature as non-Gaussian Markov processes of the jump-type. The possibility of a physical application for the understanding of the non-Debye dielectric relaxation phenomena is discussed. The predictive power of the presented formalism does not seem to surpass the one based on the combination of continuous time random walks with Lévy stable distributed waiting times, c.f. A. K. Jonscher, A. Jurlewicz and K. Weron [Contemp. Phys. 44, 329 (2003), see also cond-mat/0210481].
82B31Stochastic methods in equilibrium statistical mechanics
60G15Gaussian processes
60G10Stationary processes
60G20Generalized stochastic processes
60K37Processes in random environments