zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Algorithms for solving the conditional covering problem on paths. (English) Zbl 1090.90123
Summary: Consider the conditional covering problem on an undirected graph, where each node represents a site that must be covered by a facility, and facilities may only be established at these nodes. Each facility can cover all sites that lie within some common covering radius, except the site at which it is located. Although this problem is difficult to solve on general graphs, there exist special structures on which the problem is easily solvable. In this paper, we consider the special case in which the graph is a simple path. For the case in which facility location costs do not vary based on the site, we derive characteristics of the problem that lead to a linear-time shortest path algorithm for solving the problem. When the facility location costs vary according to the site, we provide a more complex, but still polynomial-time, dynamic programming algorithm to find the optimal solution.
90B80Discrete location and assignment
90C39Dynamic programming
90C59Approximation methods and heuristics