zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Commuting and stable feedback design for switched linear systems. (English) Zbl 1090.93029
Summary: Commuting and stable feedback design for switched linear systems is investigated. This problem is formulated as to build up suitable state feedback controller for each subsystem such that the closed-loop systems are not only asymptotically stable but also commuting each other. A new concept, common admissible eigenvector set (CAES), is introduced to establish necessary/sufficient conditions for commuting and stable feedback controllers. For second-order systems, a necessary and sufficient condition is established. Moreover, a parametrization of the CAES is also obtained. The motivation comes from stabilization of switched linear systems which consist of a family of LTI systems and a switching law specifying the switching between them, where if all the subsystems are stable and commuting each other, then the total system is stable under arbitrary switching.
93C57Sampled-data control systems
93B52Feedback control
93D15Stabilization of systems by feedback