zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in 2 . (English) Zbl 1092.65122
Summary: We investigate the numerical approximation of the variational solution to the fractional advection dispersion equation (FADE) on bounded domains in 2 . More specifically, we investigate the computational aspects of the Galerkin approximation using continuous piecewise polynomial basis functions on a regular triangulation of the domain. The computational challenges of approximating the solution to fractional differential equations using the finite element method stem from the fact that a fractional differential operator is a nonlocal operator. Several numerical examples are given which demonstrate approximations to FADEs.
MSC:
65R20Integral equations (numerical methods)
45K05Integro-partial differential equations
26A33Fractional derivatives and integrals (real functions)