zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the joint distribution of surplus before and after ruin under a Markovian regime switching model. (English) Zbl 1093.60051
The paper considers the Markov-modulated risk model introduced by S. Asmussen [Scand. Actuar. J. 1989, No. 2, 69–100 (1989; Zbl 0684.62073)], the joint distribution of the surplus before and after ruin assuming that the claim sizes are phase-type distributed. If the problem can be solved in the case of phase-type distribution, the problem in the general case can be approximated by using a sequence of phase-type distributions which converge to the desired probability distribution. The authors show when the initial surplus is zero or the claim size distributions are phase-type, it is possible to obtain a closed form solution to the joint distribution being considered. For the study of ruin probability, joint distribution of surplus, moments of surplus at moments of the ruin and the time of ruin, a set of integro-differential equations satisfied by the H. U. Gerber and E. S. W. Shiu expected discounted penalty function [N. Am. Actuar. J. 2, No. 1, 48–78 (1998; Zbl 1081.60550)] is derived.
MSC:
60J27Continuous-time Markov processes on discrete state spaces
91B30Risk theory, insurance