zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Explicit exponential Runge-Kutta methods for semilinear parabolic problems. (English) Zbl 1093.65052

Summary: The aim of this paper is to analyze explicit exponential Runge-Kutta methods for the time integration of semilinear parabolic problems. The analysis is performed in an abstract Banach space framework of sectorial operators and locally Lipschitz continuous nonlinearities. We commence by giving a new and short derivation of the classical (nonstiff) order conditions for exponential Runge-Kutta methods, but the main interest of our paper lies in the stiff case.

By expanding the errors of the numerical method in terms of the solution, we derive new order conditions that form the basis of our error bounds for parabolic problems. We show convergence for methods up to order four, and we analyze methods that were recently presented in the literature. These methods have classical order four, but they do not satisfy some of the new conditions. Therefore, an order reduction is expected. We present numerical experiments which show that this order reduction in fact arises in practical examples. Based on our new conditions, we finally construct methods that do not suffer from order reduction.

MSC:
65J15Equations with nonlinear operators (numerical methods)
65M12Stability and convergence of numerical methods (IVP of PDE)
65L06Multistep, Runge-Kutta, and extrapolation methods
34G20Nonlinear ODE in abstract spaces
65L70Error bounds (numerical methods for ODE)
35K55Nonlinear parabolic equations
65M06Finite difference methods (IVP of PDE)
65M15Error bounds (IVP of PDE)