zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the averaging of symmetric positive-definite tensors. (English) Zbl 1094.74010
Summary: We present properly invariant averaging procedures for symmetric positive-definite tensors which are based on different measures of nearness of symmetric positive-definite tensors. These procedures intrinsically account for the positive-definite property of the tensors to be averaged. They are independent of the coordinate system, preserve material symmetries, and more importantly, they are invariant under inversion. The results of these averaging methods are compared with the results of other methods including that proposed by S. Cowin and G. Yang [J. Elasticity 46, No. 2, 151–180 (1997; Zbl 0902.73006)] for the case of the elasticity tensor of generalized Hooke’s law.
74B05Classical linear elasticity
15A48Positive matrices and their generalizations (MSC2000)
15A72Vector and tensor algebra, theory of invariants
[1]K. Aleksandrov and L. Aisenberg, A method of calculating the physical constants of polycrystalline materials. Sov. Phys. Dokl. 11 (1966) 323–325.
[2]T. Ando, C.-K. Li and R. Mathias, Geometric means. Linear Algebra Appl. 385 (2004) 305–334. · Zbl 1063.47013 · doi:10.1016/j.laa.2003.11.019
[3]P.G. Batchelor, M. Moakher, D. Atkinson, F. Calamante and A. Connelly, A rigorous framework for diffusion tensor calculus. Magn. Reson. Med. 53 (2005) 221–225. · doi:10.1002/mrm.20334
[4]R. Bhatia, Matrix Analysis. Springer, Berlin Heidelberg New York (1997).
[5]S.C. Cowin and M.M. Mehrabadi, On the structure of the linear anisotropic symmetries. J. Mech. Phys. Solids 40 (1992) 1459–1472. · Zbl 0837.73013 · doi:10.1016/0022-5096(92)90029-2
[6]S.C. Cowin and G. Yang, Averaging anisotropic elastic constant data. J. Elast. 46 (1999) 151–180. · Zbl 0902.73006 · doi:10.1023/A:1007335407097
[7]R.F.S. Hearmon, The elastic constants of piesoelectric crystals. J. Appl. Phys. 3 (1952) 120–123.
[8]S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces. Academic Press, New York (1978).
[9]R. Hill, The elastic properties of crystalline aggregate. Proc. Phys. Soc. A 65 (1952) 349–354. · doi:10.1088/0370-1298/65/5/307
[10]V.V. Jikov, S.M. Kozlov and O.A. Oleinik, Homogenization of Differential Operators and Integral Functionals. Transl. from Russian by G.A. Yosifian. Springer, Berlin Heidelberg New York (1994).
[11]C.S. Kenney and A.J. Laub, Condition estimates for matrix functions. SIAM J. Matrix Anal. Appl. 10 (1989) 191–209. · Zbl 0684.65039 · doi:10.1137/0610014
[12]S. Kullback and R.A. Leibler, On information and sufficiency. Ann. Math. Stat. 22 (1951) 79–86. · Zbl 0042.38403 · doi:10.1214/aoms/1177729694
[13]S. Lang, Fundamentals of Differential Geometry. Springer, Berlin Heidelberg New York (1999).
[14]S. Matthies and M. Humbert, On the principle of a geometric mean of even-rank symmetric tensors for textured polycrystals. J. Appl. Crystallogr. 28 (1995) 254–266. · doi:10.1107/S0021889894009623
[15]M.M. Mehrabadi, S.C. Cowin and J. Jaric, Six-dimensional orthogonal tensor representation of the rotation about an axis in three dimensions. Int. J. Solids Struct. 32 (1995) 439–449. · Zbl 0865.73006 · doi:10.1016/0020-7683(94)00112-A
[16]M.M. Mehrabadi and S.C. Cowin, Eigentensors of linear anisotropic elastic materials. Quart. J. Mech. Appl. Math. 43(1) (1990) 15–41. · Zbl 0698.73002 · doi:10.1093/qjmam/43.1.15
[17]M. Moakher, Means and averaging in the group of rotations. SIAM J. Matrix Anal. Appl. 24 (2002) 1–16. · Zbl 1028.47014 · doi:10.1137/S0895479801383877
[18]M. Moakher, A differential geometric approach to the geometric mean of symmetric positive-definite matrices. SIAM J. Matrix Anal. Appl. 26 (2005) 735–747. · Zbl 1079.47021 · doi:10.1137/S0895479803436937
[19]M. Moakher and P.G. Batchelor, Symmetric positive definite matrices: From geometry to applications and visualization. Chapter 17 In: J. Weickert and H. Hagen (eds.), Visualization and Image Processing of Tensor Fields. Springer, Berlin Heidelberg New York (2005).
[20]A. Morawiec, Calculation of polycrystal elastic constants from single crystal data. Phys. Status Solidi, B 154 (1989) 535–541. · doi:10.1002/pssb.2221540213
[21]P.R. Morris, Averaging fourth-rank tensors with weight functions. J. Appl. Phys. 40 (1969) 447–448. · doi:10.1063/1.1657417
[22]W. Pusz and S.L. Woronowicz, Functional calculus for sesquilinear forms and the purification map. Rep. Math. Phys. 8 (1975) 159–170. · Zbl 0327.46032 · doi:10.1016/0034-4877(75)90061-0
[23]A. Reuss, Berechnung der Fliebgrenze von Mischkristallen auf grund der Plastizitätsbedingung für Einkristalle. Z. Angew. Math. Mech. 9 (1929) 49–58. · Zbl 02574220 · doi:10.1002/zamm.19290090104
[24]S. Smith, Optimization techniques on Riemannian manifolds. In: Fields Institute Communications, Vol. 3, AMS (1994) pp. 113–146.
[25]A. Terras, Harmonic Analysis on Symmetric Spaces and Applications II. Springer, Berlin Heidelberg New York (1988).
[26]G.E. Trapp, Hermitian semidefinite matrix means and related matrix inequalities–an introduction. Linear and Multilinear Algebra 16 (1984) 113–123. · Zbl 0548.15013 · doi:10.1080/03081088408817613
[27]W. Voigt, Ueber die Beziehung zwischen den beiden Elasticitätconstanten isotroper Körper. Ann. Phys. (Leipzig). 38 (1889) 573–587.
[28]W. Voigt, Lehrbuch der Kristallphysik. Teubner, Leipzig (1928).