zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Visualization and analysis of DNA sequences using DNA walks. (English) Zbl 1094.92025

Summary: Visual methods illustrate how DNA sequences are read along a single DNA strand from the 5 ' end to the 3 ' end and they provide the hopes of gaining an understanding of the underlying genomic language. By handling genomic sequence residues as elements of a discrete-time signal, digital signal processing techniques can be employed for the analysis of genomic information. Using these representations and applying frequency domain transformations, it is shown that structures, or seemingly nonrandom behavior, may be readily identified in nucleotide sequences.

We review the basic method of DNA walks and we show how these representations can be used to extract useful knowledge from the genomic data; namely long-range correlation information, sequence periodicities, and other sequence characteristics. Further information is elucidated through wavelet transform analysis. This work finally relates a measure of sequence complexity to these visual findings and offers conclusions regarding quantifying DNA sequence behavior or structure.

MSC:
92C40Biochemistry, molecular biology
92C55Biomedical imaging and signal processing, tomography