zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Stability of anisotropic capillary surfaces between two parallel planes. (English) Zbl 1095.76019
The authors extend results of M. Athanassenas [J. Reine Angew. Math. 377, 97–107 (1987; Zbl 0604.53003)] and Th. I. Vogel [SIAM J. Appl. Math. 47, 516–525 (1987; Zbl 0627.53004)] on the stability of capillary surfaces between two parallel planes to anisotropic rotational symmetric surface energies. It is shown that any stable embedded equilibrium capillary surface between two horizontal planes with nonempty free boundary on these planes is either a sufficiently short cylinder or a suitable part of the Wulff shape which is a hemisphere in the case of a homogeneous energy functional, see Athanassenas or Vogel. The proof is based on previous studies of the authors into anisotropic Delaunay surfaces, a generalization of Wente’s (1966) second variation formula and on explicit calculations similar to Athanassenas and Vogel.
76D45Capillarity (surface tension)
76M30Variational methods (fluid mechanics)
[1]Athanassenas, M.: A variational problem for constant mean curvature surfaces with free boundary. J. Reine Angew. Math. 377, 97–107 (1987) · Zbl 0604.53003 · doi:10.1515/crll.1987.377.97
[2]Barbosa, J.L., Do Carmo, M., Eschenburg, J.: Stability of hypersurfaces of constant mean curvature in Riemannian manifolds. Math. Zeit. 197, 123–138 (1988) · Zbl 0653.53045 · doi:10.1007/BF01161634
[3]Courant, R., Hilbert, D.: Methods of Mathematical Physics, Vol. 1. John Wiley, New York (1989)
[4]Clarenz, U., von der Mosel, H.: On surfaces of prescribed F-mean curvature. Pacific J. Math. 213, 15–36 (2004) · Zbl 1058.53003 · doi:10.2140/pjm.2004.213.15
[5]Federer, H.: Geometric Measure Theory, Die Grundlehren der Mathematischen Wissenschaften, Band 153. Springer-Verlag New York Inc., New York (1969)
[6]Finn, R.: Equilibrium Capillary Surfaces, Grundlehren der Mathematischen Wissenschaften, 284. Springer-Verlag, New York (1986)
[7]Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, Reprint of the 1998 edition. Classics in Mathematics, Springer-Verlag, Berlin (2001)
[8]Hopf, H.: Differential Geometry in the Large, Second edition, Lecture Notes in Mathematics 1000. Springer-Verlag, Berlin (1989)
[9]Koiso, M., Palmer, B.: Geometry and stability of surfaces with constant anisotropic mean curvature preprint.
[10]Reilly, Robert C.: The relative differential geometry of nonparametric hypersurfaces. Duke Math. J. 43, 705–721 (1976) · Zbl 0342.53015 · doi:10.1215/S0012-7094-76-04355-6
[11]Palmer, B.: Stability of the Wulff shape. Proc. Amer. Math. Soc. 126, 3661–3667 (1998) · Zbl 0924.53009 · doi:10.1090/S0002-9939-98-04641-3
[12]Taylor, J.E.: Crystalline variational problems. Bull. Amer. Math. Soc. 84, 568–588 (1978) · Zbl 0392.49022 · doi:10.1090/S0002-9904-1978-14499-1
[13]Vogel, T.I.: Stability of a liquid drop trapped between two parallel planes. SIAM J. Appl. Math. 47, 516–525 (1987) · Zbl 0627.53004 · doi:10.1137/0147034