zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Analytical solution of a time-fractional Navier-Stokes equation by Adomian decomposition method. (English) Zbl 1096.65131
Summary: The aim of the present analysis is to apply the Adomian decomposition method for the solution of a time-fractional Navier-Stokes equation in a tube. By using an initial value, the explicit solution of the equation is presented in closed form and then its numerical solution is represented graphically. The present method performs extremely well in terms of efficiency and simplicity.
MSC:
65R20Integral equations (numerical methods)
35Q30Stokes and Navier-Stokes equations
76D05Navier-Stokes equations (fluid dynamics)
45K05Integro-partial differential equations
45G10Nonsingular nonlinear integral equations
26A33Fractional derivatives and integrals (real functions)
76M25Other numerical methods (fluid mechanics)