zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Some existence results for vector quasivariational inequalities involving multifunctions and applications to traffic equilibrium problems. (English) Zbl 1097.49012
Summary: Some existence results for vector quasivariational inequalities with multifunctions in Banach spaces are derived by employing the KKM-Fan theorem. In particular, we generalize a result by Lin, Yang and Yao, and avoid monotonicity assumptions. We also consider a new quasivariational inequality problem and propose notions of weak and strong equilibria while applying the results to traffic network problems.
49J40Variational methods including variational inequalities
90C29Multi-objective programming; goal programming
47J20Inequalities involving nonlinear operators
90B20Traffic problems
91B52Special types of equilibria in economics
[3]Browder F.E. (1970). Existence theorems for nonlinear partial differential equations. In: Proceedings of Symposia in Pure Mathematics of AMS, Providence, Rhode Island 16, 1–60.
[4] · Zbl 0966.60003 · doi:10.1023/A:1008393715273
[5]Chen G.Y., Yen N.D. (1993). On the Variational Inequality Model for Network Equilibrium, Internal Report 3.196 (724), Department of Mathematics, University of Pisa.
[7] · Zbl 0937.90005 · doi:10.1023/A:1021779823196
[10] · Zbl 0901.49010 · doi:10.1023/A:1022673922484
[11] · Zbl 0532.47043 · doi:10.1007/BF01458545
[13] · Zbl 1054.90068 · doi:10.1007/s001860000058
[14] · Zbl 1023.90057 · doi:10.1007/s001860200208
[15] · Zbl 1009.90093 · doi:10.1016/S0377-2217(98)00047-2
[16]Giannessi F. (1980). Theorems of alternative, quadratic programs and complementarity problems. In: Cottle R.W., Giannessi F., Lions J.-L (eds). Variational Inequalities and Complementarity Problems. Wiley, New York NY, pp. 1–1
[17]Giannessi F. (2000). Vector variational inequalities and vector equilibria, mathematical theories, Vol. 38 of Series. Nonconvex Optimization and its Applications, Kluwer, Dordrecht
[18] · Zbl 0798.49013 · doi:10.1007/BF02196593
[19] · Zbl 0904.49005 · doi:10.1007/BF02192248
[20] · Zbl 0903.90141 · doi:10.1023/A:1022666014055
[21]Hai, N.X. and Khanh, P.Q. (2004), Existence of Solutions to General Quasi-Equilibrium Problems and Applications (In press).
[23] · Zbl 1059.49017 · doi:10.1007/s10957-004-5722-3
[24] · Zbl 0911.90325 · doi:10.1023/A:1021756328706
[26] · Zbl 0970.47052 · doi:10.1023/A:1004617914993
[27] · Zbl 0886.90157 · doi:10.1023/A:1022640130410
[31] · Zbl 0644.47050 · doi:10.1016/0022-247X(87)90198-3
[33] · Zbl 0892.90158 · doi:10.1023/A:1022647607947
[34] · Zbl 0813.49010 · doi:10.1287/moor.19.3.691
[35] · Zbl 0947.49005 · doi:10.1023/A:1021701913337