zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Piecewise-linear H controller synthesis with applications to inventory control of switched production systems. (English) Zbl 1097.90006
Summary: This paper focuses on the problem of inventory control of production systems. The main contribution of the paper is that production systems are modeled as constrained switched linear systems and the inventory control problem is formulated as a constrained switched H problem with a piecewise-affine (PWA) control law. The switching variable for the production systems modeled in this paper is the stock level. When the stock level is positive, some of the perishable produced parts are being stored and will deteriorate with time at a given rate. When the stock level is negative it leads to backorders, which means that orders for production of parts are coming in and there are no stocked parts to immediately meet the demand. A state feedback controller that forces the stock level to be kept close to zero (sometimes called a just-in-time policy), even when there are fluctuations in the demand, will be designed in this paper using H control theory. The synthesis of the state feedback controller that quadratically stabilizes the production dynamics and at the same time rejects the external demand fluctuation (treated as a disturbance) is cast as a set of linear matrix inequalities (LMIs). Two numerical examples are provided to show the effectiveness of the proposed method.
MSC:
90B05Inventory, storage, reservoirs
93B36H -control
90B30Production models