zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A new formula for the exponents of the generators of the Lorentz group. (English) Zbl 1098.22008
Mladenov, Ivaïlo (ed.) et al., Proceedings of the 7th international conference on geometry, integrability and quantization, Sts. Constantine and Elena, Bulgaria, June 2–10, 2005. Sofia: Bulgarian Academy of Sciences (ISBN 954-8495-30-9/pbk). 98-115 (2006).
The level of this paper is quite elementary. The authors show that any matrix in the Lie algebra so(3,1) of the Lorentz group SO(3,1) can be mapped via an inner automorphism into a matrix which is of much simpler form. Then the authors obtain a formula for the exponent expX of an arbitrary matrix X in so(3,1). As an application, the authors determine the trajectories of a particle with mass m which carries an electric charge e in a constant electromagnetic field specified by a matrix X in so(3,1).
MSC:
22E43Structure and representation of the Lorentz group
22E70Applications of Lie groups to physics; explicit representations
70B05Kinematics of a particle