zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Time-space fabric underlying anomalous diffusion. (English) Zbl 1098.60078
Summary: This study unveils the time-space transforms underlying anomalous diffusion process. Based on this finding, we present the two hypotheses concerning the effect of fractal time-space fabric on physical behaviors and accordingly derive fractional quantum relationships between energy and frequency, momentum and wavenumber which further give rise to fractional Schrödinger equation. As an alternative modeling approach to the standard fractional derivatives, we introduce the concept of the Hausdorff derivative underlying the Hausdorff dimensions of metric spacetime. And in terms of the proposed hypotheses, the Hausdorff derivative is used to derive a linear anomalous transport-diffusion equation underlying anomalous diffusion process. Its Green’s function solution turns out to be a stretched Gaussian distribution and is compared with that from the Richardson’s turbulence diffusion equation.
MSC:
60J60Diffusion processes