zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A point interpolation meshless method based on radial basis functions. (English) Zbl 1098.74741
Summary: A point interpolation meshless method is proposed based on combining radial and polynomial basis functions. Involvement of radial basis functions overcomes possible singularity associated with the meshless methods based on only the polynomial basis. This non-singularity is useful in constructing well-performed shape functions. Furthermore, the interpolation function obtained passes through all scattered points in an influence domain and thus shape functions are of delta function property. This makes the implementation of essential boundary conditions much easier than the meshless methods based on the moving least-squares approximation. In addition, the partial derivatives of shape functions are easily obtained, thus improving computational efficiency. Examples on curve/surface fittings and solid mechanics problems show that the accuracy and convergence rate of the present method is high.

MSC:
74S30Other numerical methods in solid mechanics
74K20Plates (solid mechanics)
74L10Soil and rock mechanics