zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An integrated inventory-routing system for multi-item joint replenishment with limited vehicle capacity. (English) Zbl 1098.90005
Summary: In this paper, we develop a mathematical programming approach for coordinating inventory and transportation decisions in an inbound commodity collection system. In particular, we consider a system that consists of a set of geographically dispersed suppliers that manufacture one or more non-identical items, and a central warehouse that stocks these items. The warehouse faces a constant and deterministic demand for the items from outside retailers. The items are collected by a fleet of vehicles that are dispatched from the central warehouse. The vehicles are capacitated, and must also satisfy a frequency constraint. Adopting a policy in which each vehicle always collects the same set of items, we formulate the inventory-routing problem of minimizing the long-run average inventory and transportation costs as a set partitioning problem. We employ a column generation approach to determine a lower bound on the total costs, and develop a branch-and-price algorithm that finds the optimal assignment of items to vehicles. We also propose greedy constructive heuristics, and develop a very large-scale neighborhood (VLSN) search algorithm to find near-optimal solutions for the problem. Computational tests are performed on a set of randomly generated problem instances.
MSC:
90B05Inventory, storage, reservoirs
60K25Queueing theory
60K30Applications of queueing theory
References:
[1] · doi:10.1287/msom.5.4.348.24884
[2]
[3] · Zbl 1014.68052 · doi:10.1016/S0166-218X(01)00338-9
[4]
[5] · Zbl 1064.90039 · doi:10.1016/S0167-6377(02)00236-5
[6]
[7] · doi:10.1111/j.1475-3995.2000.tb00201.x
[8] · Zbl 0694.90044 · doi:10.1287/mnsc.36.1.92
[9] · Zbl 0771.90032 · doi:10.1287/opre.41.1.37
[10] · Zbl 0813.90037 · doi:10.1016/0377-2217(94)90059-0
[11] · Zbl 0979.90092 · doi:10.1287/opre.46.3.316
[12] · Zbl 0798.90037 · doi:10.1287/trsc.28.1.37
[13] · doi:10.1002/(SICI)1520-6750(199906)46:4<399::AID-NAV4>3.0.CO;2-9
[14]
[15]
[16] · Zbl 0567.90020 · doi:10.1287/opre.33.3.469
[17] · Zbl 1231.90016 · doi:10.1287/mnsc.46.2.217.11923
[18] · Zbl 0996.90007 · doi:10.1287/opre.46.1.96
[19] · Zbl 0989.90528 · doi:10.1287/mnsc.44.11.1562
[20]
[21] · Zbl 0668.90019 · doi:10.1287/trsc.23.2.67
[22] · doi:10.1287/opre.6.6.791
[23] · doi:10.1007/BF02022035
[24] · doi:10.1002/1520-6750(198712)34:6<891::AID-NAV3220340613>3.0.CO;2-J
[25]
[26] · Zbl 0552.90026 · doi:10.1287/opre.32.5.1019
[27]
[28] · Zbl 1165.90435 · doi:10.1287/opre.51.6.922.24914
[29] · Zbl 0695.90030 · doi:10.1287/mnsc.36.2.240
[30]
[31]
[32]
[33] · Zbl 0256.90038 · doi:10.1287/opre.21.2.498
[34]
[35] · Zbl 0938.90005 · doi:10.1016/S0377-2217(98)00301-4
[36] · Zbl 0364.90104 · doi:10.1137/0206041
[37] · Zbl 0895.90161 · doi:10.1287/opre.45.6.831
[38] · doi:10.1287/trsc.37.1.40.12823
[39]
[40]
[41]
[42] · Zbl 0797.90021 · doi:10.1287/opre.41.5.935
[43]
[44]
[45] · Zbl 0888.90055 · doi:10.1287/mnsc.43.3.294
[46]