zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A susceptible-infected epidemic model with voluntary vaccinations. (English) Zbl 1098.92044
Summary: A susceptible-infected epidemic model with endogenous behavioral changes is presented to analyze the impact of a prophylactic vaccine on disease prevalence. It is shown that, with voluntary vaccination, whether an endemic equilibrium exists or not does not depend on vaccine efficacy or the distribution of agent-types. Although an endemic equilibrium is unique in the absence of a vaccine, the availability of a vaccine can lead to multiple endemic equilibria that differ in disease prevalence and vaccine coverage. Depending on the distribution of agent-types, the introduction of a vaccine or, if one is available, a subsidy for vaccination can increase disease prevalence by inducing more risky behavior.
92C60Medical epidemiology
90C39Dynamic programming
90C90Applications of mathematical programming
[1]Ahituv A., Hotz V., Philipson T. (1996) The responsiveness of the demand for condoms to the local prevalence of AIDS. J Hum Resour 31, 869–897 · doi:10.2307/146150
[2]Blower S., McLean A. (1994) Prophylactic vaccines, risk behavior change, and the probability of eradicating HIV in San Francisco. Science 265, 1451–1454 · doi:10.1126/science.8073289
[3]Chen F. (2004) Rational behavioral response and the transmission of STDs. Theor Popul Biol 66, 307–316 · Zbl 1073.92042 · doi:10.1016/j.tpb.2004.07.004
[4]Davenport M., Ribeiro R., Chao D., Perelson A. (2004) Predicting the impact of a nonsterilizing vaccine against human immunodeficiency virus. J Virol 78, 11340–11351 · doi:10.1128/JVI.78.20.11340-11351.2004
[5]Esparza J. (2001) An HIV vaccine: How and when?. Bull World Health Organ 79, 1133–1137
[6]Feinleib J., Michael R. (1998) Reported changes in sexual behavior in response to AIDS in the United States. Prev Med 27, 400–411 · doi:10.1006/pmed.1998.0270
[7]Garber D., Silvestri G., Feinberg M. (2004) Prospects for an AIDS vaccine three big questions, no easy answers. Lancet Infect Dis 4, 397–413 · doi:10.1016/S1473-3099(04)01056-4
[8]Geoffard P-Y, Philipson T. (1996) Rational epidemics and their public control. Int Econ Rev 37, 603–624 · Zbl 0862.90038 · doi:10.2307/2527443
[9]Gray R., Li X., Wawer M., Gange S., Serwadda D., Sewankambo N., Moore R., Wabwire-Mangen F., Lutalo T., Quinn T. (2003) Stochastic simulation of the impact of antiretroviral therapy and HIV vaccines on HIV transmission; Rakai, Uganda. AIDS 17, 1941–1951 · doi:10.1097/00002030-200309050-00013
[10]Hanke T. (2001) Prospect of a prophylactic vaccine for HIV Br Med Bull 58, 205–218
[11]Johnston M., Flores J. (2001) Progress in HIV vaccine development. Curr Opin Pharmacol 1, 504–510 · doi:10.1016/S1471-4892(01)00086-8
[12]Kremer M. (1996) Integrating behavioral choice into epidemiological models of AIDS. Q J Econ 111, 549–573 · Zbl 0845.92022 · doi:10.2307/2946687
[13]Letvin N. (2005) Progress toward an HIV vaccine. Annu Rev Med 56, 213–223 · doi:10.1146/annurev.med.54.101601.152349
[14]Levy J. (2001) What can be achieved with an HIV vaccine. Lancet 357, 223–224 · doi:10.1016/S0140-6736(00)03601-1
[15]Massad E., Coutinho F., Burattini M., Lopez L., Struchiner C. (2001) Modeling the impact of imperfect HIV vaccines on the incidence of the infection. Math Comput Model. 34, 345–351 · Zbl 0987.92022 · doi:10.1016/S0895-7177(01)00066-8
[16]McLean A., Blower S. (1993) Imperfect vaccines and herd immunity to HIV. Proc R Soc Lond B 253, 9–13 · doi:10.1098/rspb.1993.0075
[17]Newman P., Duan N., Rudy E., Johnston-Roberts K. (2004) HIV risk and prevention in a post-vaccine context. Vaccine 22, 1954–1963 · doi:10.1016/j.vaccine.2003.10.031
[18]Philipson T., Posner R. (1993) Private Choices and Public Health: The AIDS Epidemic in an Economic Perspective. Harvard University Press, Cambridge
[19]Ross S. (1983) Introduction to Stochastic Dynamic Programming. Academic Press, New York
[20]Smith R., Blower S. (2004) Could disease-modifying HIV vaccines cause population-level perversity. Lancet Infect Dis 4, 636–639 · doi:10.1016/S1473-3099(04)01148-X
[21]Spearman P. (2003) HIV vaccine development: lessons from the past and promise for the future. Curr HIV Res 1, 101–120 · doi:10.2174/1570162033352093
[22]Stoneburner R., Low-Beer D. (2004) Population-level HIV declines and behavioral risk avoidance in Uganda. Science 304, 714–718 · doi:10.1126/science.1093166
[23]UNAIDS: AIDS Epidemic Update: 2004. UNAIDS, Geneva (2004a)
[24]UNAIDS: 2004 Report on the Global HIV/AIDS Epidemic: 4th Global Report. UNAIDS, Geneva (2004b)