zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Quasi-hom-Lie algebras, central extensions and 2-cocycle-like identities. (English) Zbl 1099.17015
The authors first introduce the notion of quasi-hom-Lie algebras, a natural generalization of hom-Lie algebras introduced by J. T. Hartwig and the authors. Quasi-hom-Lie algebras include color Lie algebras and superalgebras, and can be seen as deformations of these by maps, twisting the Jacobi identity and skew-symmetry. The goal for introducing the quasi-hom-Lie algebras is to generalize or deform the Witt algebra of derivations on the Laurent polynomials [t,t -1 ]. A theory of central extensions for quasi-hom-Lie algebras is developed. The main result of the paper is the description of central extensions of quasi-hom-Lie algebras in terms of equivalence classes of 2-cocycle-like maps.
Reviewer: Yucai Su (Hefei)

MSC:
17B99Lie algebras
17B68Virasoro and related algebras