zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Least-squares covariance matrix adjustment. (English) Zbl 1099.65039

SUMMARY: We consider the problem of finding the smallest adjustments to a given symmetric n×n matrix, as measured by the Euclidean or Frobenius norm, so that it satisfies some given linear equalities and inequalities, and in addition is positive semidefinite. This least-squares covariance adjustment problem is a convex optimization problem, and can be efficiently solved using standard methods when the number of variables (i.e., entries in the matrix) is modest, say, under 1000. Since the number of variables is n(n+1)/2, this corresponds to a limit n=45· J. Malick [SIAM J. Matrix Anal. Appl. 26, 272–284 (2004; Zbl 1080.65027)] studies a closely related problem and calls it the semidefinite least-squares problem.

In this paper we formulate a dual problem that has no matrix inequality or matrix variables, and a number of (scalar) variables equal to the number of equality and inequality constraints in the original least-squares covariance adjustment problem. This dual problem allows us to solve far larger least-squares covariance adjustment problems than would be possible using standard methods.

Assuming a modest number of constraints, problems with n=1000 are readily solved by the dual method. The dual method coincides with the dual method proposed by Malick [loc. cit.] when there are no inequality constraints and can be obtained as an extension of his dual method when there are inequality constraints. Using the dual problem, we show that in many cases the optimal solution is a low rank update of the original matrix. When the original matrix has structure, such as sparsity, this observation allows us to solve very large least-squares covariance adjustment problems.

MSC:
65F30Other matrix algorithms
90C06Large-scale problems (mathematical programming)
90C22Semidefinite programming
90C46Optimality conditions, duality
65F20Overdetermined systems, pseudoinverses (numerical linear algebra)
15A57Other types of matrices (MSC2000)