zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Two-level stabilized finite element methods for the steady Navier-Stokes problem. (English) Zbl 1099.65111
Summary: Two-level stabilized finite element formulations of the two-dimensional steady Navier-Stokes problem are analyzed. A macroelement condition is introduced for constructing the local stabilized formulation of the steady Navier-Stokes problem. By satisfying this condition the stability of the Q 1 -P 0 quadrilateral element and the P 1 -P 0 triangular element are established. Moreover, the two-level stabilized finite element methods involve solving one small Navier-Stokes problem on a coarse mesh with mesh size H, a large Stokes problem for the simple two-level stabilized finite element method on a fine mesh with mesh size h=O(H 2 ) or a large general Stokes problem for the Newton two-level stabilized finite element method on a fine mesh with mesh size h=O(|logh| 1/2 H 3 ). The methods we study provide an approximate solution (u h , p h ) with the convergence rate of same order as the usual stabilized finite element solution, which involves solving one large Navier-Stokes problem on a fine mesh with mesh size h. Hence, our methods can save a large amount of computational time.
65N30Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (BVP of PDE)
35Q30Stokes and Navier-Stokes equations
76M10Finite element methods (fluid mechanics)
35L70Nonlinear second-order hyperbolic equations
76D06Statistical solutions of Navier-Stokes and related equations
[1]Ait Ou Ammi, A., Marion, M.: Nonlinear Galerkin methods and mixed finite elements: Two-grid algorithms for the Navier–Stokes equations. Numer. Math. 68, 189–213 (1994).
[2]Babuska, I., Osborn, J., Pitkäranta, J.: Analysis of mixed methods using mesh dependent norms. Math. Comp. 35, 1039–1062 (1980).
[3]Boland, J., Nicolaides, R. A.: Stability of finite elements under divergence constraints. SIAM J. Numer. Anal. 20, 722–731 (1983).
[4]Bercovier, J., Pironneau, O.: Error estimates for finite element solution of the Stokes problem in the primitive variables. Numer. Math. 33, 211–224 (1979).
[5]Bramble, J. H., Pasciak, J. E.: A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems. Math. Comp. 50, 1–17 (1988).
[6]Brezzi, F., Pitkäranta, J.: On the stabilisation of finite element approximations of the Stokes problems. Efficient solutions of elliptic systems (Hackbusch, W., ed.), pp. 11–19. Notes on Numerical Fluid Mechanics, vol. 10. Braunschweig: Vieweg 1984.
[7]Ciarlet, P. G.: The finite element method for elliptic problems. Amsterdam: North-Holland 1978.
[8]Douglas, Jr. J., Wang, J.: A absolutely stabilized finite element method for the Stokes problem. Math. Comp. 52, 495–508 (1989).
[9]Ervin, V., Layton, W., Maubach, J.: A posteriori error estimators for a two-levelfinite element method for the Navier–Stokes equations. Numer. Meth. PDEs 12, 333–346 (1996).
[10]Girault, V., Raviart, P. A.: Finite element method for Navier–Stokes equations: theory and algorithms. Berlin Heidelberg: Springer 1986.
[11]Yinnian He.: A fully discrete stabilized finite-element method for the time-dependent Navier–Stokes problem. IMA J. Numer. Anal. 23, 665–691 (2003).
[12]Yinnian He., Kaitai Li.: Convergence and stability of finite element nonlinear Galerkin method for the Navier–Stokes equations. Numer. Math. 79, 77–107 (1998).
[13]Hughes, T. J. R., Franca, L. P.: A new finite element formulation for CFD: VII. The Stokes problem with various well-posed boundary conditions: Symmetric formulations that converge for all velocity/pressure spaces. Comp. Meth. Appl. Mech. Engng. 65, 85–97 (1987).
[14]Heywood, J. G., Rannacher, R.: Finite element approximation of the nonstationary Navier–Stokes problem I: Regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. 19, 275–311 (1982).
[15]Kellogg, R. B., Osborn, J. E.: A regularity result for the Stokes problem in a convex polygon. J. Funct. Anal. 21, 397–431 (1976).
[16]Kay, D., Silvester, D.: A posteriori error estimation for stabilized mixed approximations of the Stokes equations. SIAM J. Sci. Comput. 21, 1321–1337 (2000).
[17]Kechkar, N., Silvester, D.: Analysis of locally stabilized mixed finite element methods for the Stokes problem. Math. Comp. 58, 1–10 (1992).
[18]Ladyzenskaja, O. A.: Mathematical questions of viscous non-compressible fluid dynamics. M. Nauka, 1970, pp. 288.
[19]Layton, W.: A two level discretization method for the Navier–Stokes equations. Comput. Math. Appl. 26, 33–38 (1993).
[20]Layton, W., Lenferink, W.: Two-level Picard, defect correction for the Navier–Stokes equations. Appl. Math. Comput. 80, 1–12 (1995).
[21]Layton, W., Tobiska, L.: A two-level method with backtracking for the Navier–Stokes equations. SIAM J. Numer. Anal. 35, 2035–2054 (1998).
[22]Marion, M., Xu, J.: Error estimates on a new nonlinear Galerkin method based on two-grid finite elements. SIAM J. Numer. Anal. 32, 1170–1184 (1995).
[23]Sani, R. L., Gresho, P. M., Lee, R. L., Griffiths, D. F.: The cause and cure(?) of the spurious pressures generated by certain finite element method solutions of the incompressible Navier–Stokes equations. Parts 1 and 2. Int. J. Numer. Meth. Fluids 1, 17–43; 171–204 (1981).
[24]Silvester, D. J., Kechkar, N.: Stabilized bilinear-constant velocity-pressure finite elements for the conjugate gradient solution of the Stokes problem. Comp. Meth. Appl. Mech. Engng. 79, 71–87 (1990).
[25]Stenberg, R.: Analysis of mixed finite elements for the Stokes problem: A unified approach. Math. Comp. 42, 9–23 (1984).
[26]Temam, R.: Navier–Stokes equations, theory and numerical analysis. 3rd ed. Amsterdam: North-Holland 1983.
[27]Verfürth, R.: A multilevel algorithm for mixed problems. SIAM J. Numer. Anal. 21, 264–271 (1984).
[28]Xu, J.: A novel two-grid method for semilinear elliptic equations. SIAM J. Sci. Comput. 15, 231–237 (1994).
[29]Xu, J.: Two-grid discretization techniques for linear and nonlinear PDEs. SIAM J. Numer. Anal. 33, 1759–1778 (1996).