zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Homotopy solution for the channel flow of a third-grade fluid. (English) Zbl 1100.76005
Summary: The solution for the flow of a third-grade fluid bounded by two parallel porous plates is given using homotopy analysis method (HAM). A comparison is made with the exact numerical solution for various values of physical parameters. It is found that a proper choice of an auxiliary parameter occurring in HAM solution gives very close results.
MSC:
76A05Non-Newtonian fluids
76M45Asymptotic methods, singular perturbations (fluid mechanics)
76S05Flows in porous media; filtration; seepage
References:
[1]Rivlin, R. S. and Ericksen, J. L., ’Stress deformation relation for isotropic material’, Journal of Rational Mechanics and Analysis 4, 1955, 323–425.
[2]Beard, D. W. and Walters, K., ’Elastico-viscous boundary layer flows. I-Two dimensional flow near a stagnation point’, Proceedings of Cambridge Philosophical Society 60, 1964, 667–674. · doi:10.1017/S0305004100038147
[3]Serth, R.W., ’Solution of a viscoelastic boundary layer equation by orthogonal collocation’, Journal of Engineering Mathematics 8, 1974, 89–92. · Zbl 0277.76002 · doi:10.1007/BF02353609
[4]Teipel, I., ’Stagnation point flow of a non-Newtonian second order fluid’, Transctions Canadian Society for Mechanical Engineering 12, 1988, 57–61.
[5]Ariel, P. D., ’A hybrid method for computing the flow of viscoelastic fluids’, International Journal of Numerical Methods in Fluids 14, 1992, 757–774. · Zbl 0753.76111 · doi:10.1002/fld.1650140702
[6]Ariel, P. D.,’On exact solution of flow problems of a second grade fluid through two parallel porous walls’, International Journal of Engineering Science 40, 2002, 913–941. · Zbl 1211.76016 · doi:10.1016/S0020-7225(01)00073-8
[7]Ariel, P. D., ’Flow of a third grade fluid through a porous flat channel’, International Journal of Engineering Science 41, 2003, 1267–1285. · Zbl 1211.76108 · doi:10.1016/S0020-7225(02)00380-4
[8]Liao, S. J., Beyond Perturbation: Introduction to Homotopy Analysis Method, Chapman & Hall/Press, Boca Raton, Florida, 2003.
[9]Liao, S.,J., ’An explicit, totally analytic approximate solution for Blasius’ viscous flow problems’, International Journal of Non-Linear Mechanics 34, 1999, 759–778. · Zbl 05137896 · doi:10.1016/S0020-7462(98)00056-0
[10]Ayub, M., Rasheed, A., and Hayat, T., ’Exact flow of a third grade fluid past a porous plate using homotopy analysis method’, International Journal of Engineering Science 41, 2003, 2091–2103. · Zbl 1211.76076 · doi:10.1016/S0020-7225(03)00207-6
[11]Fosdick, R .L. and Rajagopal, K. R., ’Anomalous features in the model of second order fluids’, Archives of Rational Mechanics and Analysis 70, 1979, 145–152.