zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A parallel hybrid genetic algorithm for the vehicle routing problem with time windows. (English) Zbl 1100.90503
Summary: A parallel version of a new hybrid genetic algorithm for the vehicle routing problem with time windows is presented. The route-directed hybrid genetic approach is based upon the simultaneous evolution of two populations of solutions focusing on separate objectives subject to temporal constraint relaxation. While the first population evolves individuals to minimize total traveled distance the second aims at minimizing temporal constraint violation to generate a feasible solution. Genetic operators have been designed to capture key concepts from successful routing techniques to further enhance search diversification and intensification. A master–slave message-passing paradigm characterizes the parallel procedure. The master component controls the execution of the algorithm, coordinates genetic operations and handles parent selection while the slave elements concurrently execute reproduction and mutation operators. Providing additional speed-up, the parallel algorithm further expands on its sequential counterpart, matching or even improving solution quality. Computational results show the proposed technique to be very competitive with the best-known heuristic routing procedures providing some new best-known solutions.
MSC:
90B06Transportation, logistics
90C59Approximation methods and heuristics