zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Conformal mappings between canonical multiply connected domains. (English) Zbl 1101.30010
The authors show that the modified Green’s function of a multiply connected circular domain can be represented by the Schottky-Klein prime function associated with this domain. Using this result, explicit analytic formulae for the conformal mappings from circular domains to domains with parallel, radial or circular slits are constructed.

MSC:
30C20Conformal mappings of special domains
31A15Potentials and capacity, harmonic measure, extremal length (two-dimensional)
References:
[1]M. J. Ablowitz and A. S. Fokas, Complex Variables, Cambridge University Press, 1997.
[2]H. Baker, Abelian Functions, Cambridge University Press, Cambridge, 1995.
[3]A. F. Beardon, A Primer on Riemann Surfaces, London. Math. Soc. Lecture Note Ser. 78, Cambridge University Press, Cambridge, 1984.
[4]E. D. Belokolos, A. I. Bobenko, V. Z. Enol’skii, A. R. Its and V. B. Matveev, Algebro-Geometric Approach to Nonlinear Integrable Equations, Springer Verlag, 1994.
[5]D. G. Crowdy and J. S. Marshall, Analytical formulae for the Kirchhoff-Routh path function in multiply connected domains, Proc. Roy. Soc. A. 461 (2005), 2477–2501. · Zbl 1186.76630 · doi:10.1098/rspa.2005.1492
[6]D. G. Crowdy and J. S. Marshall, The motion of a point vortex through gaps in walls, to appear in J. Fluid Mech.
[7]D. G. Crowdy, Schwarz-Christoffel mappings to multiply connected polygonal domains, Proc. Roy. Soc. A 461 (2005), 2653–2678. · Zbl 1186.30005 · doi:10.1098/rspa.2005.1480
[8]D. G. Crowdy, Genus-N algebraic reductions of the Benney hierarchy within a Schottky model, J. Phys. A: Math. Gen. 38 (2005), 10917–10934. · Zbl 1092.37046 · doi:10.1088/0305-4470/38/50/004
[9]J. Gibbons and S. Tsarev, Conformal mappings and reductions of the Benney equations, Phys Lett. A 258 (1999), 263–271. · Zbl 0936.35184 · doi:10.1016/S0375-9601(99)00389-8
[10]P. Henrici, Applied and Computational Complex Analysis, Wiley Interscience, New York, 1986.
[11]G. Julia, Lecons sur la representation conforme des aires multiplement connexes, Gaulthiers-Villars, Paris, 1934.
[12]H. Kober, A Dictionary of Conformal Representation, Dover, New York, 1957.
[13]P. Koebe, Abhandlungen zur Theorie der konformen Abbildung, Acta Mathematica 41 (1914), 305–344. · doi:10.1007/BF02422949
[14]V. V. Mityushev and S. V. Rogosin, Constructive Methods for Linear and Nonlinear Boundary Value Problems for Analytic Function Theory, Chapman & Hall/CRC, London, 1999.
[15]D. Mumford, C. Series and D. Wright, Indra’s Pearls, Cambridge University Press, 2002.
[16]Z. Nehari, Conformal Mapping, au]McGraw-Hill,_ New York, 1952.
[17]M. Schiffer, Recent advances in the theory of conformal mapping, appendix to: R. Courant, Dirichlet’s Principle, Conformal Mapping and Minimal Surfaces, 1950.
[18]M. Schmies, Computational methods for Riemann surfaces and helicoids with handles, Ph.D. thesis, University of Berlin, 2005.