×

Ekeland’s variational principle, minimax theorems and existence of nonconvex equilibria in complete metric spaces. (English) Zbl 1101.49022

Summary: We introduce the concept of \(\tau\)-function which generalizes the concept of w-distance studied in the literature. We establish a generalized Ekeland’s variational principle in the setting of lower semicontinuous from above and \(\tau\)-functions. As applications of our Ekeland’s variational principle, we derive generalized Caristi’s (common) fixed point theorems, a generalized Takahashi’s nonconvex minimization theorem, a nonconvex minimax theorem, a nonconvex equilibrium theorem and a generalized flower petal theorem for lower semicontinuous from above functions or lower semicontinuous functions in the complete metric spaces. We also prove that these theorems also imply our Ekeland’s variational principle.

MSC:

49K27 Optimality conditions for problems in abstract spaces
49K35 Optimality conditions for minimax problems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Amemiya, M.; Takahashi, W., Fixed point theorems for fuzzy mappings in complete metric spaces, Fuzzy Sets and Systems, 125, 253-260 (2002) · Zbl 0987.54051
[2] Ansari, Q. H.; Lin, L. J.; Su, L. B., Systems of simultaneous generalized vector quasi-equilibrium problems and their applications, J. Optim. Theory Appl., 127, 27-44 (2005) · Zbl 1211.49004
[3] Aubin, J.-P.; Siegel, J., Fixed points and stationary points of dissipative multivalued maps, Proc. Amer. Math. Soc., 78, 3, 391-398 (1980) · Zbl 0446.47049
[4] Bae, J. S., Fixed point theorems for weakly contractive multivalued maps, J. Math. Anal. Appl., 284, 690-697 (2003) · Zbl 1033.47038
[5] Bae, J. S.; Cho, E. W.; Yeom, S. H., A generalization of the Caristi-Kirk fixed point theorem and its application to mapping theorems, J. Korean Math. Soc., 31, 29-48 (1994) · Zbl 0842.47035
[6] Caristi, J., Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc., 215, 241-251 (1976) · Zbl 0305.47029
[7] Chen, Y.; Cho, Y. J.; Yang, L., Note on the results with lower semi-continuity, Bull. Korean Math. Soc., 39, 4, 535-541 (2002) · Zbl 1040.49016
[8] Daffer, P. Z.; Kaneko, H.; Li, W., Variational principle and fixed points, (Agarwal, R. P.; O’Regan, D., Set Valued Mappings With Applications in Nonlinear Analysis (2002), Taylor and Francis: Taylor and Francis London) · Zbl 1013.47018
[9] Dancs, S.; Hegedüs, M.; Medvegyev, P., A general ordering and fixed point principle in complete metric spaces, Acta Sci. Math., 46, 381-388 (1983) · Zbl 0532.54030
[10] Ekeland, I., Remarques sur les problémes variationnels, I, C. R. Acad. Sci. Paris Sér. A-B, 275, 1057-1059 (1972) · Zbl 0249.49004
[11] Ekeland, I., On the variational principle, J. Math. Anal. Appl., 47, 324-353 (1974) · Zbl 0286.49015
[12] Ekeland, I., Nonconvex minimization problems, Bull. Amer. Math. Soc., 1, 443-474 (1979) · Zbl 0441.49011
[13] Gajek, L.; Zagrodny, D., Geometric variational principle, Dissertationes Math., 340, 55-71 (1995) · Zbl 0858.49007
[14] Göpfert, A.; Tammer, Chr.; Zălinescu, C., On the vectorial Ekeland’s variational principle and minimal points in product spaces, Nonlinear Anal., 39, 909-922 (2000) · Zbl 0997.49019
[15] Hamel, A., Remarks to an equivalent formulation of Ekeland’s variational principle, Optimization, 31, 3, 233-238 (1994) · Zbl 0815.49012
[16] Hamel, A.; Löhne, A., A minimal point theorem in uniform spaces, (Nonlinear Anal. Appl. (to V. Lakshmikantham on his 80th birthday), vol. 1 (2003), Kluwer Academic), 577-593 · Zbl 1045.58013
[17] Hyers, D. H.; Isac, G.; Rassias, T. M., Topics in Nonlinear Analysis and Applications (1997), World Scientific: World Scientific Singapore · Zbl 0878.47040
[18] Kada, O.; Suzuki, T.; Takahashi, W., Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Math. Japon., 44, 381-391 (1996), 371-382 · Zbl 0897.54029
[19] Kijima, Y., On a minimization theorem, (Takahashi, W., Nonlinear Analysis and Convex Analysis (1995), RIMS), 59-62, Kokyuroku 897 · Zbl 0900.47033
[20] Lin, L. J., System of coincidence theorems with applications, J. Math. Anal. Appl., 285, 408-418 (2003) · Zbl 1051.49004
[21] McLinden, L., An application of Ekeland’s theorem to minimax problems, Nonlinear Anal., 6, 2, 189-196 (1982) · Zbl 0493.49014
[22] Mizoguchi, N.; Takahashi, W., Fixed point theorems for multivalued mappings on complete metric spaces, J. Math. Anal. Appl., 141, 177-188 (1989) · Zbl 0688.54028
[23] Oettli, W.; Théra, M., Equivalents of Ekeland’s principle, Bull. Austral. Math. Soc., 48, 385-392 (1993) · Zbl 0793.54025
[24] Park, S., On generalizations of the Ekeland-type variational principles, Nonlinear Anal., 39, 881-889 (2000) · Zbl 1044.49500
[25] Penot, J.-P., The drop theorem, the petal theorem and Ekeland’s variational principle, Nonlinear Anal., 10, 9, 813-822 (1986) · Zbl 0612.49011
[26] Shioji, N.; Suzuki, T.; Takahashi, W., Contractive mappings, Kannan mappings and metric completeness, Proc. Amer. Math. Soc., 126, 3117-3124 (1998) · Zbl 0955.54009
[27] Suzuki, T., Generalized distance and existence theorems in complete metric spaces, J. Math. Anal. Appl., 253, 440-458 (2001) · Zbl 0983.54034
[28] Suzuki, T., On Downing-Kirk’s theorem, J. Math. Anal. Appl., 286, 453-458 (2003) · Zbl 1042.47036
[29] Suzuki, T., Generalized Caristi’s fixed point theorems by Bae and others, J. Math. Anal. Appl., 302, 502-508 (2005) · Zbl 1059.54031
[30] Suzuki, T.; Takahashi, W., Fixed point theorems and characterizations of metric completeness, Topol. Methods Nonlinear Anal., 8, 371-382 (1996) · Zbl 0902.47050
[31] Takahashi, W., Existence theorems generalizing fixed point theorems for multivalued mappings, (Théra, M. A.; Baillon, J. B., Fixed Point Theory and Applications. Fixed Point Theory and Applications, Pitman Res. Notes Math. Ser., vol. 252 (1991), Longman: Longman Harlow), 397-406 · Zbl 0760.47029
[32] Takahashi, W., Nonlinear Functional Analysis (2000), Yokohama Publishers: Yokohama Publishers Yokohama, Japan
[33] Tataru, D., Viscosity solutions of Hamilton-Jacobi equations with unbounded nonlinear terms, J. Math. Anal. Appl., 163, 345-392 (1992) · Zbl 0757.35034
[34] Zhong, C.-K., On Ekeland’s variational principle and a minimax theorem, J. Math. Anal. Appl., 205, 239-250 (1997) · Zbl 0870.49015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.