zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Computational methods for solving fully fuzzy linear systems. (English) Zbl 1101.65040

Summary: Since many real-world engineering systems are too complex to be defined in precise terms, imprecision is often involved in any engineering design process. Fuzzy systems have an essential role in this fuzzy modelling, which can formulate uncertainty in actual environment. In addition, this is an important sub-process in determining inverse, eigenvalue and some other useful matrix computations, too. One of the most practicable subjects in recent studies is based on LR fuzzy numbers, which are defined and used by D. Dubois and H. Prade [Fuzzy sets and systems. Theory and applications. (1980; Zbl 0444.94049)] with some useful and easy approximation arithmetic operators on them. Recently M. Dehghan, M. Ghatee, and B. Hashemi [Some computations on fuzzy matrices (to appear)] extended some matrix computations on fuzzy matrices, where a fuzzy matrix appears as a rectangular array of fuzzy numbers.

In continuation to our previous work, we focus on fuzzy systems in this paper. It is proved that finding all of the real solutions which satisfy in a system with interval coefficients is NP-hard. The same result can similarly be derived for fuzzy systems. So we employ some heuristics based methods on Dubois and Prade’s approach, finding some positive fuzzy vector x ˜ which satisfies A ˜x ˜, where A ˜ and b ˜ are a fuzzy matrix and a fuzzy vector, respectively. We propose some new methods to solve this system that are comparable to the well known methods such as the Cramer’s rule, Gaussian elimination, LU decomposition method (Doolittle algorithm) and its simplification. Finally we extend a new method employing linear programming for solving square and non-square (over-determined) fuzzy systems. Some numerical examples clarify the ability of our heuristics.

65F20Overdetermined systems, pseudoinverses (numerical linear algebra)
65F05Direct methods for linear systems and matrix inversion (numerical linear algebra)
08A72Fuzzy algebraic structures