zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Reliability-based structural optimization using neural networks and Monte Carlo simulation. (English) Zbl 1101.74377
Summary: This paper examines the application of neural networks (NN) to reliability-based structural optimization of large-scale structural systems. The failure of the structural system is associated with the plastic collapse. The optimization part is performed with evolution strategies, while the reliability analysis is carried out with the Monte Carlo simulation (MCS) method incorporating the importance sampling technique for the reduction of the sample size. In this study two methodologies are examined. In the first one an NN is trained to perform both the deterministic and probabilistic constraints check. In the second one only the elasto-plastic analysis phase, required by the MCS, is replaced by a neural network prediction of the structural behaviour up to collapse. The use of NN is motivated by the approximate concepts inherent in reliability analysis and the time consuming repeated analyses required by MCS.
MSC:
74S30Other numerical methods in solid mechanics
74P10Optimization of other properties (solid mechanics)
92B20General theory of neural networks (mathematical biology)
62N05Reliability and life testing (survival analysis)