zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Option pricing for pure jump processes with Markov switching compensators. (English) Zbl 1101.91034
The authors propose a model for asset prices that follow a jump process whose statistical behaviour is allowed switching between N states. This is accomplished by employing Markov switching drift/compensator pairs. The resulting stock price process has the potential not only to capture any empirically observed behaviour (such as the term structures of moments) but it also allows diffusion-like behaviour allowing infinite activity around the origin. As it is not possible to obtain the density function in a closed form, a closed form expression for the characteristic function is derived instead, and an equivalent martingale representation is provided. The power of the characteristic function is demonstrated by utilizing it directly to value a large class of European options on a stock that follows this process, and to obtain optimal hedge ratios for these options.
MSC:
91B28Finance etc. (MSC2000)
60G44Martingales with continuous parameter
60G51Processes with independent increments; Lévy processes
60G10Stationary processes
60J75Jump processes
References:
[1]Aït-Sahalia Y. (2002) Telling from discrete data whether the underlying continuous-time model is a diffusion. J Finance 57, 2075–2112 · doi:10.1111/1540-6261.00489
[2]Barndorff-Nielsen O.E. (1998) Processes of normal inverse Gaussian type. Finance Stoch 2, 41–68 · Zbl 0894.90011 · doi:10.1007/s007800050032
[3]Buffington J., Elliott R.J. (2002) American options with regime switching. Int J Theor Appl Finance 5, 497–514 · Zbl 1107.91325 · doi:10.1142/S0219024902001523
[4]Carr P., Madan D.B. (1999) Option valuation using the Fast Fourier Transform. J Comput Finance 2, 61–73
[5]Carr P., Geman H., Madan D.B., Yor M. (2002) The fine structure of asset returns: An empirical investigation. J Bus 75, 305–332 · doi:10.1086/338705
[6]Carrasco, M., Chernov, M., Florens, J.P., Ghysels, E. Efficient estimation of jump diffusions and general dynamic models with a continuum of moment conditions. Working paper, Department of Economics, University of Rochester 2004
[7]Carrasco M., Florens J.P. (2000) Generalization of GMM to a continuum of moment conditions. Econ Theory 16, 797–834 · Zbl 0968.62028 · doi:10.1017/S0266466600166010
[8]Clark P.K. (1973) A subordinated stochastic process model with finite variance for speculative prices. Econometrica 41, 135–156 · Zbl 0308.90011 · doi:10.2307/1913889
[9]Colwell D.B., Elliott R.J. (1993) Discontinuous asset prices and non-attainable contingent claims. Math Finance 3, 295–308 · Zbl 0884.90021 · doi:10.1111/j.1467-9965.1993.tb00046.x
[10]Elliott R.J. (1982) Stochastic calculus and applications. Springer, Berlin Heidelberg New York
[11]Elliott R.J. (1993) New finite dimensional filters and smoothers for noisily observed Markov chains. IEEE Trans Inf Theory 39, 265–271 · Zbl 0779.93093 · doi:10.1109/18.179372
[12]Geman H., Madan D.B., Yor M. (2001) Time changes for Lévy processes. Math Finance 11, 79–96 · Zbl 0983.60082 · doi:10.1111/1467-9965.00108
[13]Ghysels, E., Gouriéroux, C., Jasiak, J.: M asset price movements: Theory and estimation. In: Hand, D., Jacka , S. (eds.) Statistics in finance, Chap. 15, pp. 307–332. London: Edward Arnold 1997
[14]Jacod J., Shiryayev A.N. (1987) Limit theorems for stochastic processes. Springer, Berlin Heidelberg New York
[15]Knight J.L., Yu J. (2002) Empirical characteristic functions in time series estimation. Econ Theory 18, 691–721 · Zbl 1109.62337 · doi:10.1017/S026646660218306X
[16]Konikov M., Madan D.B. (2002) Option pricing using variance-gamma Markov chains. Rev Derivatives Res 5, 81–115 · Zbl 1064.91044 · doi:10.1023/A:1013816400834
[17]Lewis, A.L. A simple option formula for general jump-diffusion and other exponential Lévy processes. Working paper, Optioncity.net 2002
[18]Madan D.B., Carr P., Chang E.C. (1998) The variance gamma process and option pricing. Eur Finance Rev 2, 79–105 · Zbl 0937.91052 · doi:10.1023/A:1009703431535
[19]Mandelbrot B., Taylor H. (1967) On the distribution of stock prices differences. Oper Res 15, 1057–1062 · doi:10.1287/opre.15.6.1057
[20]Raible, S. Lévy processes in finance: theory, numerics, and empirical facts. PhD Thesis, University of Freiburg (2000)
[21]Schweizer M. (1991) Option hedging for semimartingales. Stoch Process Appl 37, 339–363 · Zbl 0735.90028 · doi:10.1016/0304-4149(91)90053-F
[22]Tran K.C. (1998) Estimating mixtures of normal distributions via the empirical characteristic function. Econ Rev 17, 167–183 · Zbl 0903.62025 · doi:10.1080/07474939808800410