zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A method for solving fuzzy goal programming problems based on MINMAX approach. (English) Zbl 1102.90061
Summary: Narasimhan incorporated fuzzy set theory within goal programming formulation in 1980. Since then numerous research has been carried out in this field. One of the well-known models for solving fuzzy goal programming problems was proposed by Hannan in 1981. In this paper the conventional MINMAX approach in goal programming is applied to solve fuzzy goal programming problems. It is proved that the proposed model is an extension to Hannan model that deals with unbalanced triangular linear membership functions. In addition, it is shown that the new model is equivalent to a model proposed in 1991 by Yang et al. Moreover, a weighted model of the new approach is introduced and is compared with Kim and Whang’s model presented in 1998. A numerical example is given to demonstrate the validity and strengths of the new models.
MSC:
90C29Multi-objective programming; goal programming
90C70Fuzzy programming
90C47Minimax problems