zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Sharp minima for multiobjective optimization in Banach spaces. (English) Zbl 1103.49009
Summary: We study sharp minima for multiobjective optimization problems. In terms of the Mordukhovich coderivative and the normal cone, we present sufficient and or necessary conditions for existence of such sharp minima, some of which are new even in the single objective setting.
49J52Nonsmooth analysis (other weak concepts of optimality)
90C29Multi-objective programming; goal programming
[1]Aussel, D., Daniilidis, A., Thibault, L.: Subsmooth sets: functional characterizations and related concepts. Trans. Amer. Math. Soc. 357, (2004)
[2]Aze, D., Corvellec, J.N.: On the sensitivity analysis of Hoffman constants for systems of linear inequalities. SIAM J. Optim. 12, 913–927 (2002) · Zbl 1014.65046 · doi:10.1137/S1052623400375853
[3]Burke, J.V., Deng, S.: Weak sharp minima revisited Part I: basic theory. Control Cybernet. 31, 439–469 (2002)
[4]Burke, J.V., Ferris, M.C.: A Gauss–Newton method for convex composite optimization. Math. Programming 71, 179–194 (1995)
[5]Burke, J.V., Ferris, M.C., Qian, M.: On the Clarke subdifferential of the distance function of a closed set. J. Math. Anal. Appl. 166, 199–213 (1992) · Zbl 0761.49009 · doi:10.1016/0022-247X(92)90336-C
[6]Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)
[7]Clarke, F.H., Stern, R., Wolenski, P.: Proximal smoothness and the lower-C2 property. J. Convex Anal. 2, 117–144 (1995)
[8]Cromme, L.: Strong uniqueness, a far-reaching criterion for the convergence analysis of iterative procedures. Numer. Math. 29, 179–193 (1978) · Zbl 0352.65012 · doi:10.1007/BF01390337
[9]Jeyakumar, V.: Composite nonsmooth programming with Gateaux differentiability. SIAM J. Optim. 1, 30–41 (1991) · Zbl 0752.90067 · doi:10.1137/0801004
[10]Jeyakumar, V., Luc, D.T., Tinh, P.N.: Convex composite non-Lipschitz programming. Math. Programming 92, 177–195 (2002) · Zbl 1019.90049 · doi:10.1007/s101070100274
[11]Jeyarkumar, V., Yang, X.Q.: Convex composite multiobjective nonsmooth programming. Math. Programming 59, (1993)
[12]Jimenez, B.: Strict efficiency in vector optimization. J. Math. Anal. Appl. 265, 264–284 (2002) · Zbl 1010.90075 · doi:10.1006/jmaa.2001.7588
[13]Jimenez, B.: Strict minimality conditions in nondifferentiable multiobjective programming. J. Optim. Theory Appl. 116, 99–116 (2003) · Zbl 1030.90116 · doi:10.1023/A:1022162203161
[14]Jittorntrum, K., Osborne, M.R.: Strong uniqueness and second order convergence in nonlinear discrete approximation. Numer. Math. 34, 439–455 (1980) · Zbl 0486.65008 · doi:10.1007/BF01403680
[15]Lewis, A., Pang, J.S.: Error bounds for convex inequality systems. In: Crouzeix, J.-P., Martinez-Legaz, J.-E., Volle, M. (eds.) Generalized Convexity, Generalized Monotonicity: Recent Results, Proceedings of the Fifth Symposium on Generalized Convexity, Luminy, 1996, p. 75–110. Kluwer Academic Publishers, Dordrecht, The Netherlands (1997)
[16]Li, W.: Sharp Lipschitz constants for basic optimal solutions and basic feasible solutions of linear programs. SIAM J. Control Optim. 32, 140–153 (1994) · Zbl 0792.90080 · doi:10.1137/S036301299222723X
[17]Li, C., Wang, X.: On convergence of the Gauss–Newton method for convex composite optimization. Math. Programming 91, 349–356 (2002) · Zbl 1049.90132 · doi:10.1007/s101070100249
[18]Mordukhovich, B.S.: Maximum principle in problems of time optimal control with nonsmooth constraints. J. Appl. Math. Mech. 40, 960–969 (1976) · Zbl 0362.49017 · doi:10.1016/0021-8928(76)90136-2
[19]Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation I/II. Springer, Berlin Heidelberg New York (2006)
[20]Mordukhovich, B.S., Shao, Y.: Nonsmooth sequential analysis in Asplund spaces. Trans. Amer. Math. Soc. 348, 1235–1280 (1996) · Zbl 0881.49009 · doi:10.1090/S0002-9947-96-01543-7
[21]Osborne, M.R., Womersley, R.S.: Strong uniqueness in sequential linear programming. J. Austral. Math. Soc. Ser. B 31, 379–384 (1990) · Zbl 0709.90091 · doi:10.1017/S0334270000006731
[22]Pang, J.S.: Error bounds in mathematical programming. Math. Programming Ser. B 79, 299–332 (1997)
[23]Penot, J.P.: Optimality conditions in mathematical programming and composite optimization. Math. Programming 67, 225–245 (1994) · Zbl 0828.90137 · doi:10.1007/BF01582222
[24]Poliquin, R., Rockafellar, R.T., Thibault, L.: Local differentiability of distance functions. Trans. Amer. Math. Soc. 352, 5231–5249 (2000) · Zbl 0960.49018 · doi:10.1090/S0002-9947-00-02550-2
[25]Polyak, B.T.: Introduction to Optimization. Optimization Software, New York (1987)
[26]Rockafellar, R.T.: Directional Lipschitzian functions and subdifferential calculus. Proc. London Math. Soc. 39, 331–355 (1979) · Zbl 0413.49015 · doi:10.1112/plms/s3-39.2.331
[27]Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin Heidelberg New York (1998)
[28]Rudin, W.: Functional Analysis. McGraw-Hill, New York (1973)
[29]Shapiro, A.: On a class of nonsmooth composite functions. Math. Oper. Res. 28, 677–692 (2003) · Zbl 1082.90117 · doi:10.1287/moor.28.4.677.20512
[30]Studniarski, M., Ward, D.E.: Weak sharp minima: Characterizations and sufficient conditions. SIAM J. Control Optim. 38, 219–236 (1999) · Zbl 0946.49011 · doi:10.1137/S0363012996301269
[31]Womersley, R.S.: Local properties of algorithms for minimizing nonsmooth composite functions. Math. Programming 32, 69–89 (1985) · Zbl 0571.90084 · doi:10.1007/BF01585659
[32]Zalinescu, C.: Weak sharp minima, well-behaving functions and global error bounds for convex inequalities in Banach spaces. Proc. 12th Baikal Internat. Conf. on Optimization Methods and Their Appl. Irkutsk, Russia, pp. 272–284 (2001)
[33]Zalinescu, C.: Sharp estimates for Hoffman’s constant for systems of linear inequalities and equalities. SIAM J. Optim. 14, 517–533 (2003) · Zbl 1072.90028 · doi:10.1137/S1052623402403505
[34]Zheng, X.Y., Ng, K.F.: Hoffmans least error bounds for systems of linear inequalities. J. Global Optim. 30, 391–403 (2004) · Zbl 1082.90062 · doi:10.1007/s10898-004-7020-x
[35]Zheng, X.Y., Ng, K.F.: Error bound moduli for conic convex systems on Banach spaces. Math. Oper. Res. 29, 213–228 (2004) · Zbl 1082.90120 · doi:10.1287/moor.1030.0088