zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Computing the Hausdorff distance of geometric patterns and shapes. (English) Zbl 1104.68792
Aronov, Boris (ed.) et al., Discrete and computational geometry. The Goodman-Pollack Festschrift. Berlin: Springer (ISBN 3-540-00371-1/hbk). Algorithms Comb. 25, 65-76 (2003).
Summary: A very natural distance measure for comparing shapes and patterns is the Hausdorff distance. In this article we develop algorithms for computing the Hausdorff distance in a very general case in which geometric objects are represented by finite collections of k-dimensional simplices in d-dimensional space. The algorithms are polynomial in the size of the input, assuming d is a constant. In addition, we present more efficient algorithms for special cases like sets of points, or line segments, or triangulated surfaces in three dimensions.
MSC:
68U05Computer graphics; computational geometry