zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On stabilized finite element methods for the Stokes problem in the small time step limit. (English) Zbl 1104.76059
Summary: Recent studies indicate that consistently stabilized methods for unsteady incompressible flows, obtained by a method of lines may experience difficulty when the time step is small relative to the spatial grid size. Using as a model problem the unsteady Stokes equations, we show that the semi-discrete pressure operator associated with such methods is not uniformly coercive. We prove that for sufficiently large (relative to the square of the spatial grid size) time steps, implicit time discretizations contribute terms that stabilize this operator. However, we also prove that if the time step is sufficiently small, then the fully discrete problem necessarily leads to unstable pressure approximations. The semi-discrete pressure operator studied in the paper also arises in pressure-projection methods, thereby making our results potentially useful in other settings.
MSC:
76M10Finite element methods (fluid mechanics)
76D07Stokes and related (Oseen, etc.) flows