zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Cauchy problem for the Vlasov-Poisson-Boltzmann system. (English) Zbl 1104.76086
Summary: The dynamics of dilute electrons can be modelled by fundamental Vlasov-Poisson-Boltzmann system which describes mutual interactions of electrons through collisions in a self-consistent electric field. In this paper, it is shown that any smooth perturbation of a given global Maxwellian leads to a unique global-in-time classical solution when either the mean free path is small or the background charge density is large. Moreover, the solution converges to global Maxwellian when time tends to infinity. The analysis combines the techniques used in the study of conservation laws with the decomposition of Boltzmann equation introduced by T.-P. Liu et al. [Phys. D 188, No. 3–4, 178–192 (2004; Zbl 1098.82618)] and T.-P. Liu and S.-H. Yu [Commun. Math. Phys. 246, No. 1, 133–179 (2004; Zbl 1092.82034)] by obtaining new entropy estimates for this physical model.
76X05Ionized gas flow in electromagnetic fields; plasmic flow
76P05Rarefied gas flows, Boltzmann equation
45K05Integro-partial differential equations
[1]Boltzmann L. (1964) (translated by Stephen G. Brush): Lectures on Gas Theory. Dover Publications, Inc. New York
[2]Cercignani C. The Boltzmann Equation and its Applications. Applied Mathematical Sciences, 67. Springer-Verlag, New York, xii+455 pp, 1988
[3]Cercignani, C., Illner, R., Pulvirenti, M. The mathematical theory of dilute gases. Applied Mathematical Sciences, 106. Springer-Verlag, New York, viii+347 pp, 1994
[4]Desvillettes L., Dolbeault J. (1991) On long time asymptotics of the Vlasov-Poisson-Boltzmann equation. Comm. Partial Differential Equations 16, 451–489 · Zbl 0737.35127 · doi:10.1080/03605309108820765
[5]Diperna R.J., Lions P.-L. (1989) Global weak solutions ofVlasov-Maxwell systems. Comm. Pure Appl. Math. 42, 729–757 · Zbl 0698.35128 · doi:10.1002/cpa.3160420603
[6]Glassey, R.T. The Cauchy problem in kinetic theory. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, xii+241 pp, 1996
[7]Glassey R.T., Strauss W.A. (1999) Decay of the linearized Boltzmann-Vlasov system. Transport Theory Statist. Phys. 28, 135–156 · Zbl 0983.82018 · doi:10.1080/00411459908205653
[8]Golse F., Perthame B., Sulem C. (1986) On a boundary layer problem for the nonlinear Boltzmann equation. Arch. Ration Mech. Anal. 103, 81–96 · Zbl 0668.76089 · doi:10.1007/BF00292921
[9]Grad H. (1963) Asymptotic theory of the boltzmann equation II. Rarefied Gas Dynamics (Laurmann, J.A. Ed.). Vol. 1, Academic Press, New York, pp. 26–59
[10]Guo Y. (2002) The Vlasov-Poisson-Boltzmann system near Maxwellians. Comm. Pure Appl. Math. 55, 1104–1135 · Zbl 1027.82035 · doi:10.1002/cpa.10040
[11]Guo Y. (2003) The Vlasov-Maxwell-Boltzmann system near Maxwellians. Invent. Math. 153, 593–630 · Zbl 1029.82034 · doi:10.1007/s00222-003-0301-z
[12]Guo Y. (2001) The Vlasov-Poisson-Boltzmann system near vacuum. Comm. Math. Phys. 218, 293–313 · doi:10.1007/s002200100391
[13]Kawashima S., Matsumura A. (1985) Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion. Comm. Math. Phys. 101, 97–127 · Zbl 0624.76095 · doi:10.1007/BF01212358
[14]Lions, P.-L. On kinetic equations. Proceedings of the International Congress of Mathematicians Kyoto, 1173–1185, Math. Soc. Japan, 1991
[15]Liu T.-P., Yang T., Yu S.-H. (2004) Energy method for the Boltzmann equation. Physica D 188, 178–192 · Zbl 1098.82618 · doi:10.1016/j.physd.2003.07.011
[16]Liu T.-P., Yang, T., Yu, S.-H., Zhao, H.-J. Nonlinear stability of rarefaction waves for the Boltzmann equation. Arch. Ration Mech. Anal. DOI: 10.1007/s00205-005-0414-1
[17]Liu T.-P., Yu S.-H. (2004) Boltzmann equation: Micro-macro decompositions and positivity of shock profiles. Comm. Math. Phys. 246, 133–179 · Zbl 1092.82034 · doi:10.1007/s00220-003-1030-2
[18]Mischler S. (2000) On the initial boundary value problem for the Vlasov-Poisson-Boltzmann system. Comm. Math. Phys. 210, 447–466 · Zbl 0983.45007 · doi:10.1007/s002200050787