zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Global stability of a delayed SIR epidemic model with density dependent birth and death rates. (English) Zbl 1105.92034
Summary: An SIR epidemic model with density dependent birth and death rates is formulated. In our model it is assumed that the total number of the population is governed by a logistic equation. The transmission of infection is assumed to be of the standard form, namely proportional to I(t-h)/N(t-h) where N(t) is the total (variable) population size, I(t) is the size of the infective population and a time delay h is a fixed time during which the infectious agents develops in the vector. We consider transmission dynamics for the model. Stability of an endemic equilibrium is investigated. The stability result is stated in terms of a threshold parameter, that is, a basic reproduction number R 0 .
MSC:
92D30Epidemiology
34K20Stability theory of functional-differential equations
34K25Asymptotic theory of functional-differential equations