zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Chaotic hyperjerk systems. (English) Zbl 1106.37024
Summary: A hyperjerk system is a dynamical system governed by an nth-order ordinary differential equation with n>3 describing the time evolution of a single scalar variable. Such systems are surprisingly general and are prototypical examples of complex dynamical systems in a high-dimensional phase space. This paper describes a numerical study of a simple subclass of such systems and shows that they provide a means to extend the extensive study of chaotic systems with n=3. We present some simple chaotic hyperjerks of 4th and 5th order. Two cases are examined that are apparently the simplest possible chaotic flows for n=4, together with several hyperchaotic cases for n=4 and 5.

MSC:
37D45Strange attractors, chaotic dynamics
34C28Complex behavior, chaotic systems (ODE)