zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Using Liu-type estimator to combat collinearity. (English) Zbl 1107.62345
Summary: Linear regression model and least squares method are widely used in many fields of natural and social sciences. In the presence of collinearity, the least squares estimator is unstable and often gives misleading information. Ridge regression is the most common method to overcome this problem. We find that when there exists severe collinearity, the shrinkage parameter selected by existing methods for ridge regression may not fully address the ill conditioning problem. To solve this problem, we propose a new two-parameter estimator. We show using both theoretic results and simulation that our new estimator has two advantages over ridge regression. First, our estimator has less mean squared error (MSE). Second, our estimator can fully address the ill conditioning problem. A numerical example from literature is used to illustrate the results.
62J07Ridge regression; shrinkage estimators
62F10Point estimation