zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The trajectories of particles in Stokes waves. (English) Zbl 1108.76013
Summary: Analyzing a free boundary problem for harmonic functions, we show that there are no closed particle paths in an irrotational inviscid traveling wave propagating at the surface of water over a flat bed: within a period each particle experiences a backward-forward motion with a slight forward drift.

76B15Water waves, gravity waves; dispersion and scattering, nonlinear interaction
35Q35PDEs in connection with fluid mechanics
[1]Amick, C.J., Toland, J.F.: On periodic water-waves and their convergence to solitary waves in the long-wave limit. Philos. Trans. R. Soc. Lond., Ser. A 303, 633–669 (1981) · Zbl 0482.76029 · doi:10.1098/rsta.1981.0231
[2]Amick, C.J., Fraenkel, L.E., Toland, J.F.: On the Stokes conjecture for the wave of extreme form. Acta Math. 148, 193–214 (1982) · Zbl 0495.76021 · doi:10.1007/BF02392728
[3]Bryson, A.E.: Waves in Fluids. National Committee for Fluid Mechanics Films. Encyclopaedia Britannica Educational Corporation. 425 North Michigan Avenue, Chicago, IL 60611.
[4]Buffoni, B., Séré, É., Toland, J.F.: Minimization methods for quasi-linear problems with an application to periodic water waves. SIAM J. Math. Anal. 36, 1080–1094 (2005) · Zbl 1077.76058 · doi:10.1137/S0036141003432766
[5]Constantin, A.: On the deep water wave motion. J. Phys. A 34, 1405–1417 (2001) · Zbl 0982.76015 · doi:10.1088/0305-4470/34/7/313
[6]Constantin, A.: Edge waves along a sloping beach. J. Phys. A 34, 9723–9731 (2001) · Zbl 1005.76009 · doi:10.1088/0305-4470/34/45/311
[7]Constantin, A., Escher, J.: Symmetry of steady periodic surface water waves with vorticity. J. Fluid Mech. 498, 171–181 (2004) · Zbl 1050.76007 · doi:10.1017/S0022112003006773
[8]Constantin, A., Escher, J.: Symmetry of steady deep-water waves with vorticity. European J. Appl. Math. 15, 755–768 (2004) · Zbl 1125.76007 · doi:10.1017/S0956792504005777
[9]Constantin, A., Strauss, W.: Exact steady periodic water waves with vorticity. Comm. Pure Appl. Math. 57, 481–527 (2004) · Zbl 1038.76011 · doi:10.1002/cpa.3046
[10]Constantin, A., Sattinger, D., Strauss, W.: Variational formulations for steady water waves with vorticity. J. Fluid. Mech. 548, 151–163 (2006) · doi:10.1017/S0022112005007469
[11]Constantin, A., Villari, G.: Particle trajectories in linear water waves. J. Math. Fluid. Mech., to appear.
[12]Craik, A.D.D.: The origins of water wave theory. Annu. Rev. Fluid Mech. 36, 1–28 (2004) · Zbl 1076.76011 · doi:10.1146/annurev.fluid.36.050802.122118
[13]Crapper, G.D.: Introduction to Water Waves. Chichester: Ellis Horwood Ltd. 1984
[14]Debnath, L.: Nonlinear Water Waves. Boston, MA: Academic Press Inc. 1994
[15]Fraenkel, L.E.: An Introduction to Maximum Principles and Symmetry in Elliptic Problems. Cambridge: Cambridge University Press 2000
[16]Gerstner, F.: Theorie der Wellen samt einer daraus abgeleiteten Theorie der Deichprofile. Ann. Phys. 2, 412–445 (1809) · doi:10.1002/andp.18090320808
[17]Johnson, R.S.: A Modern Introduction to the Mathematical Theory of Water Waves. Cambridge: Cambridge Univ. Press 1997
[18]Keady, G., Norbury, J.: On the existence theory for irrotational water waves. Math. Proc. Camb. Philos. Soc. 83, 137–157 (1978) · Zbl 0393.76015 · doi:10.1017/S0305004100054372
[19]Lamb, H.: Hydrodynamics. Cambridge: Cambridge Univ. Press 1895
[20]Levi-Civita, T.: Détermination rigoureuse des ondes permanentes d’ampleur finie. Math. Ann. 93, 264–314 (1925) · Zbl 02593971 · doi:10.1007/BF01449965
[21]Lewy, H.: A note on harmonic functions and a hydrodynamical application. Proc. Am. Math. Soc. 3, 111–113 (1952) · doi:10.1090/S0002-9939-1952-0049399-9
[22]Lighthill, J.: Waves in Fluids. Cambridge: Cambridge Univ. Press 1978
[23]Longuet-Higgins, M.S.: The trajectories of particles in steep, symmetric gravity waves. J. Fluid Mech. 94, 497–517 (1979) · Zbl 0417.76019 · doi:10.1017/S0022112079001154
[24]Longuet-Higgins, M.S.: Eulerian and Lagrangian aspects of surface waves. J. Fluid Mech. 173, 683–707 (1986) · Zbl 1245.76011 · doi:10.1017/S0022112086001325
[25]Milne-Thomson, L.M.: Theoretical Hydrodynamics. London: The Macmillan Co. 1938
[26]Okamoto, H., Sh-oji, M.: The Mathematical Theory of Permanent Progressive Water-waves. River Edge, NJ: World Scientific Publishing Co. Inc. 2001
[27]Plotnikov, P.I., Toland, J.F.: Convexity of Stokes waves of extreme form. Arch. Ration. Mech. Anal. 171, 349–416 (2004) · Zbl 1064.76017 · doi:10.1007/s00205-003-0292-3
[28]Rankine, W.J.M.: On the exact form of waves near the surface of deep water. Philos. Trans. R. Soc. Lond., Ser. A 153, 127–138 (1863) · doi:10.1098/rstl.1863.0006
[29]Sommerfeld, A.: Mechanics of Deformable Bodies. New York: Academic Press Inc. 1950
[30]Spielvogel, E.R.: A variational principle for waves of infinite depth. Arch. Rational Mech. Anal. 39, 189–205 (1970) · Zbl 0229.76012 · doi:10.1007/BF00281250
[31]Stoker, J.J.: Water Waves. The Mathematical Theory with Applications. New York: Interscience Publ. Inc. 1957
[32]Stokes, G.G.: On the theory of oscillatory waves. Trans. Camb. Phil. Soc. 8, 441–455 (1847)
[33]Struik, D.J.: Détermination rigoureuse des ondes irrotationelles périodiques dans un canal à profondeur finie. Math. Ann. 95, 595–634 (1926) · Zbl 02588879 · doi:10.1007/BF01206629
[34]Toland, J.F.: Stokes waves. Topol. Methods Nonlinear Anal. 7, 1–48 (1996)
[35]Toland, J.F.: Stokes waves in Hardy spaces and as distributions. J. Math. Pures Appl. 79, 901–917 (2000) · Zbl 0976.35052 · doi:10.1016/S0021-7824(00)00172-0
[36]Yih, C.-S.: The role of drift mass in the kinetic energy and momentum of periodic water waves and sound waves. J. Fluid Mech. 331, 429–438 (1997) · Zbl 0891.76018 · doi:10.1017/S0022112096003539