zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Dynamic optimization with a nonsmooth, nonconvex technology: the case of a linear objective function. (English) Zbl 1108.91056
This paper presents a comprehensive analysis of a one-sector optimal growth model with linear utility in which the production is only required to be increasing and upper semicontinuous. The paper is organized as follows. First the authors describe the model. In the next section they develop various properties that constitute the essential tools of their analysis. In section 4 they show results on monotonicity and convergence of optimal paths. In the next section the authors present conditions for survival, extinction, and the existence of a minimum safe standard of conversation. Finally the turpike properties of optimal paths are described.
MSC:
91B62Growth models in economics
91B28Finance etc. (MSC2000)
References:
[1]Azariadis C., Drazen A. (1990). Threshold externalities in economic development. Q J Econ 105, 501–26 · doi:10.2307/2937797
[2]Clark C.W. (1971). Economically optimal policies for the utilization of biologically renewable resources . Math Biosci 12, 245–260 · Zbl 0226.92003 · doi:10.1016/0025-5564(71)90020-4
[3]Clark C.W. (1990). Mathematical bioeconomics: the optimal management of renewable resources, 2nd edn. Wiley, New York
[4]Dechert W.D., Nishimura K. (1983). A complete characterization of optimal growth paths in an aggregated model with a non-concave production function. J Econ Theory 31, 332–354 · Zbl 0531.90018 · doi:10.1016/0022-0531(83)90081-9
[5]Ekeland I., Scheinkman J.A. (1986). Transversality conditions for some infinite horizon discrete time optimization problems. Math Oper Res 11, 216–229 · Zbl 0593.49021 · doi:10.1287/moor.11.2.216
[6]Giorgi G., Komlósi S. (1992). Dini derivatives in optimization – Part I, Rivista di Matematica per le Scienze Economiche e Sociali 15, 3–30
[7]Kamihigashi T. (1999). Chaotic dynamics in quasi-static systems: theory and applications. J Math Econ 31, 183–214 · Zbl 0946.91042 · doi:10.1016/S0304-4068(97)00055-4
[8]Kamihigashi T., Roy S. A nonsmooth, nonconvex model of optimal growth. J Econ Theory (forthcoming) (2005)
[9]Majumdar M., Mitra T. (1982). Intertemporal allocation with a non-convex technology: the aggregative framework. J Econ Theory 27, 101–136 · Zbl 0503.90020 · doi:10.1016/0022-0531(82)90017-5
[10]Majumdar M., Mitra T. (1983). Dynamic optimization with a non-convex technology: the case of a linear objective function. Rev Econ Stud 50, 143–151 · Zbl 0501.90016 · doi:10.2307/2296961
[11]Majumdar M., Nermuth M. (1982). Dynamic optimization in non-convex models with irreversible investment: monotonicity and turnpike results. J Econ 42, 339–362
[12]Mitra T., Ray D. (1984). Dynamic optimization on a non-convex feasible set: some general results for non-smooth technologies. J Econ 44, 151–174
[13]Skiba A.K. (1978). Optimal growth with a convex-concave production function, Econometrica 46, 527–39
[14]Spence M., Starrett D. (1973). Most rapid approach paths in accumulation problems. Int Econ Rev 16, 388–403 · Zbl 0316.90009 · doi:10.2307/2525821
[15]Topkis D.M. (1978). Minimizing a submodular function on a lattice. Oper Res 26, 305–321 · Zbl 0379.90089 · doi:10.1287/opre.26.2.305