zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Periodic solutions of a nonautonomous predator–prey system with stage structure and time delays. (English) Zbl 1110.34051
Abstract: “A nonautonomous Lotka-Volterra-type predator-prey model with stage structure and time delays is investigated. It is assumed in the model that the individuals in each species may belong to one of two classes: the immatures and the matures, the age to maturity is presented by a time delay, and that the immature predators do not feed on prey and do not have the ability to produce. By some comparison arguments, we first discuss the permanence of the model. By using the continuation theorem of coincidence degree theory, sufficient conditions are derived for the existence of positive periodic solutions to the model. By means of a suitable Lyapunov functional, sufficient conditions are obtained for the uniqueness and global stability of the positive periodic solutions to the model.”
MSC:
34K13Periodic solutions of functional differential equations
34K60Qualitative investigation and simulation of models
92D25Population dynamics (general)